

City of Chicago

Innovation and Technology

Application Security Policy and Standards

From the Office of the DoIT Chief Information Officer

ASPS V3.1 20110415 Page 2 of 17

Table of Contents

Application Security Standards.. 3

Revisions... 3
Introduction... 4
Purpose.. 4
Data Classification .. 4
General Concerns.. 5

SQL Injection.. 5
Cross Site Scripting... 6
Unhandled Exceptions .. 7
Comments ... 7
Validation.. 7
Forms .. 7
Captchas.. 8
Hidden Fields .. 8
Username Enumeration... 9
Information Disclosure ... 9
Page Caching .. 9
Defaults ... 10
HTTPS .. 10
Invalid Filenames.. 10
Compliance ... 11
Developer Responsibilities ... 13

Contacts... 13
Glossary .. 13
Appendix A: PCIupplement….……………………………………………………… 13
Appendix B: HIPAA Supplement……………………………………………………..16

Application Security Policy and Standards

Revisions
Author/Editor Description Date Revision Approved By
Jonathan Villa Initial Version 02/23/2007 1.0 Tav
Thomas Vari Removed reference to Clinton.

Renamed from Web Application
Security Policy to Application
Security Policy.
Referred to Information Security
Standards in the Data
Classification Section.

10/31/07 1.1 Tav

Thomas Vari Changed BIS to DoIT 01/11/08 1.2 Tav
Thomas Vari Added Brandon 02/15/08 1.3 Tav
Thomas Vari Renamed Document to from

Application Security Policy to
Application Security Standards.
Updated reference to the
Confidentiality and Acceptable
Use Agreement.
Updated the HTTPS section
regarding the “Secure” Attribute.

03/05/08 1.4 Tav

Jonathan Villa Added additional information
regarding the use of hidden
fields and filtering data.

07/08/08 1.5

Jonathan Villa Added information on use of IP
addresses

04/03/09 1.6 Tav

Jonathan Villa Added captcha section and
vulnerability scans

07/30/09 1.7

Thomas Vari

-Added footer
-Added reference to posted
Vulnerability Policy.
-Added reference to OWASP.
-Added Appendix A: PCI
supplement
- Renamed from ‘standards’ to
‘Policy and standards’
-changed ‘should’ to ‘must’
regarding the use of https

02/15/10

1.8

Tav

Thomas Vari Added 7.2 per QSA 02/23/2010 1.9 Tav
Thomas Vari Added 3.1, 9.1 and, 12.6 per

QSA
06/23/2010 2.0 Tav and Sec team

Thomas Vari Added 8.3 and 12.3 06/23/2010 2.1 Tav and Sec team
Thomas Vari Modified 12.6.1 06/23/2010 2.2 Tav and Sec team
Thomas Vari Added Appendix B 07/12/2010 2.3 Tav
Jonathan Villa Added NOTE to App Security

Scan
09/15/2010 2.4 JV/TAV

Thomas Vari Removed Hardy added
CWE/SANS Top 25

11/04/2010 2.5 TAV

Thomas Vari Appendix A was updated with
PCI 2.0 specifications. Added
reference to HITECH. Modified
glossary.

04/13/2011 3.0

Tav and Sec team

Jonathan Villa Added Insecure cryptographic
storage, improper access
control, CSRF, and insecure
direct object references

4/15/2011 3.2 Tom and Doug

ASPS V3.1 20110415 Page 3 of 17

Introduction
The purpose of this appendix is to provide a reference for developers working on City of
Chicago Application projects. This appendix will not provide the details required to
exploit any particular vulnerability but rather insight into the concepts needed to defend
against these attacks. Furthermore, the information contained in this appendix assists
the City of Chicago in ensuring the confidentiality, integrity, and availability of its
information systems and data. Some examples include:

• Confidentiality – protecting administrative data that has been made
available on the web as well as citizen data in transmission and
storage;

• Integrity – users of an application’s administrative interface continue
to see valid and useful data;

• Availability – avoiding database crashes due to web based buffer
overflow attacks or storage or performance issues due to automated
attacks.

The information in this appendix is designed to protect against both isolated events—as
in the case of XSS and SQL Injection—as well as designed to work as part of a larger
strategy to defend against Application reconnaissance that is a requirement for an
attacker. For example, information gathered from the errors generated by one project
may allow an attacker to compromise another application.

This appendix will be updated as new vulnerabilities are discovered and more practical
ways of defense can be implemented, for example when vendors release patches that
assist in the defense of Applications allowing the web administration team to implement
the fix across the enterprise environment.

Purpose
The information technology industry has established several standards in regard to
securing private information including patient data, personal information, and payment
cards information. The City of Chicago conforms to these requirements and standards as
described in the Illinois Personal Information Act, HIPAA privacy and security rules, and
the Payment Card Industry Data Security Standard.

Data Classification
All data must be classified as Confidential, Internal, or Public as defined in the City of
Chicago’s Information Security Policy which is posted on the City’s Intranet Site.

ASPS V3.1 20110415 Page 4 of 17

General Concerns
The following is a dynamic list of common web based attacks as well as points of interest
for attackers and malicious users. This list will be updated as needed.

SQL Injection
SQL Injection is an attack made against a database by means of an application or
any other program where dynamic SQL is used by modifying the parameters in
order to change SQL statements. This can range from returning data to dropping
tables or altering a table structure. Modern enterprise databases and frameworks
have taken steps to guard against these attacks however a defense in depth
approach is preferred.

Care must be taken to ensure that data transmitted as what often times are
assumed to be nothing more than Strings or pure data are not found to contain
metacharacters that may have adverse affects once processed. In order to
ensure this, developers should convert any metacharacters contained within a
String into their appropriate character entity. Reference: Character entity
references.

A popular method used by an attacker to begin a SQL injection attack is to
produce an error message by passing invalid data to a form. If a proper error
reporting system has not been implemented within the application, an attacker
may gain access to table or column names or database version information.

Insecure Cryptographic Storage

As required by the City of Chicago’s Information Security Policy, data
transmitted, processed, or stored by an application must be encrypted using an
encryption algorithm approved by the City of Chicago’s policy if the data falls
under a classification requiring encryption. Examples of Confidential information
that must be protected include Social Security numbers and credit card numbers.
Many existing encryption algorithms have become obsolete or have been
reclassified as weak algorithms. It is the responsibility of the developer to avoid
using insecure cryptographic algorithms while processing, transmitting, or storing
data. Examples of insecure cryptographic algorithms for both encryption and
hashing data include DES, WEP, MD5 and RC4. This list should not be
considered complete therefore referring to the City of Chicago’s Cryptographic
Policy and Standards document is required.

Cross-Site Request Forgery
Cross-Site Request Forgery (CSRF) allows an attacker who has gained control
over a website to successfully execute HTTP requests to another website where
the user has already authenticated. Once the initial Phishing or trickery has been
successful, CSRF is successful because it utilizes HTTP GET and POST. To
protect against CSRF, an application should implement methods that it can rely
on to guarantee that every request has been initiated from within a valid session
and not that of a simple HTTP GET or POST using the an authenticated session
ID. A recommended approach to protecting against CSRF is the use of a
unique-per-user token submitted with every form. Furthermore, critical business
logic should be initiated on a GET request versus an HTTP POST.

ASPS V3.1 20110415 Page 5 of 17

http://www.w3.org/TR/html401/sgml/entities.html
http://www.w3.org/TR/html401/sgml/entities.html

Improper Access Control
City of Chicago web applications that have been designed to separate tasks or
privileges between guest users, users with rights to manage data, and
administrators should take due care to properly implement a secure access
control design, e.g. Role Based Access Control (RBAC). Permissions should not
rely on values not under the constant control of the application’s business logic.
Storing access control values in cookies, hidden fields, or a GET parameter
(query string) is considered insecure. Storing or relying on values used by the
business logic to determine access is also considered insecure.

Insecure Direct Object References
Applications are often developed to use identifying data as primary keys, for
example account numbers or order numbers. These values are then used within
the application to help a user navigate throughout the application, e.g. clicking on
an order id to see details of the order. While safeguards to protect against
parameter tampering via GET parameters may be implemented, an attacker may
still be able to POST an HTTP request with manipulated data fields causing the
application to response with data from a different record. Developers should
avoid exposing direct object references within their applications.

Another example of insecure direct object reference is the use of URL
parameters used to access generated files on a file system. For example,
generating a file or graphic and referring to it in the following manner,
file=12345.txt or graph=6789.png.

Administrators should secure web and applications servers against insecure
direct object references by disabling indexing of file system directories. Not
doing so allows for directory traversal which allows an attacker to browse the
servers file system through a web browser.

Cross Site Scripting
Cross Site Scripting (XSS) is an attack against the integrity of an application as
the main target is the end user. If an application is vulnerable and an end user is
victimized, the integrity or reliability of the application—and perhaps applications
in the same environment—comes into question. XSS is typically used to steal
session information and then contact the site on behalf of the victim. This can
have adverse effects when the end users data contains personal or financial
information.

An application becomes vulnerable when it lacks proper output filtering. Properly
handling the data during input will help safeguard against this attack.

Example to test for XSS:
1. User enters in the characters “><script>alert(‘test’)</script> into the name

field on a form and submits the page.
2. Some other validation fails and the user is presented with the same form &

data.
3. The first two characters, “> will be interpreted by the web browser and will

close out the name field’s value and generate a JavaScript alert.
 <input type=”text” name=”” value=””><script>alert(‘test’)</script>”>

If the data was filtered, the value of the field would be value=”"e;>alert
("e;test "e;)</script>”. This would be rendered after
the web browser has completed interpreting the markup language. Otherwise,
when not filtered, the first two characters will be interpreted by the web browser
as markup language.

ASPS V3.1 20110415 Page 6 of 17

Certain development frameworks provide data filtering capabilities that provide
data filtering within the framework's library. Developers should ensure that all
form fields and user input mediums are being filtered properly and not rely solely
on the framework to provide the filtering functionality.

Unhandled Exceptions
Every effort must be made to avoid displaying any information relating to source
code, database connections, City of Chicago package naming structures
(org.cityofchicago.dept.webapp), etc. This aligns with our defense against
Application reconnaissance. Errors printed to the browser may contain database
or table names, a hint of database credentials, or other information. Every error
should be caught and a DoIT approved system error page displayed.

Errors may also reveal versioning information regarding libraries, server versions,
etc. and may be recorded for later user when that resource has been to be
vulnerable.

Comments
Pages that are displayed to the user should contain a very minimal set of
comments. Comments can reveal usernames or emails of developers as well as
old functionality that is no longer needed and only provides the attacker with
more tools for reconnaissance. Comments should be kept to indicating very
basic HTML structural information and should not inform about loops,
conditionals, or included files.

Validation
In a security best case scenario, validation of user input would be performed on
the server. There is a debate about performance in this area where
administrators prefer to avoid making repeating calls to the application server to
validate user input. Developers have opted to introduce client-side validation
using JavaScript to avoid these repeated calls.

JavaScript—while great for enhancing the user experience—has now been
called to help the server rather than user. The security aspect of validating user
data has now been pushed onto the client where the application and its security
layer have lost control. A malicious user can easily utilize a proxy server to
bypass any client-side validation. Often times an application is relying on the
client-side validation process and when not performed, may cause an unhandled
exception to occur. This may provide the malicious user with information to be
used later in an attack.

Developers should always implement a defense in depth approach when
validating user input, i.e. always validate the user input on the server as well. If
possible, avoid using client-side validation which is quickly becoming a security
standard.

Forms
Form fields should have maximum length values corresponding to the limit
defined in the database. Setting the appropriate maximum length values will
assist in defending against web based buffer overflow attacks as well as
displaying database or application information in the event of an unhandled
exception, e.g. “value too large for column”.

Form names should be unique, i.e. they should not contain the exact name of the
database column. For example, if the database column used to store a person’s

ASPS V3.1 20110415 Page 7 of 17

first name is firstName, then the form field for first name should not be firstName
but rather something unique such as deptFirstName.

While developers may not always have control over the names of the form fields,
this approach should be used whenever possible.

Invalid data should always be treated as invalid data. Trying to convert the data
into valid data may cause unexpected results. Developers should always ensure
that the data being supplied by the client/end user is valid.

When validating data, a whitelist approach should be implemented by validating
for expected values rather than attempting to deny certain values.

Captchas
In an effort to deter the use of automated tools and scripts used to perform
validation of email accounts within City web applications, developers should
implement the use of captchas. A scenario in where an application would be
vulnerable to an email harvester would be found on a password reset page.
When a user submits their email address in an effort to get a new password, it is
assumed that the application will present an informational message indicating
that the email will be sent with a new password. This results in a positive test for
an email harvester in that the email address used has just been confirmed as
valid within the system.

While an attacker may conduct this test manually, the purpose of the captcha is
deter the attacker and prevent them from user automated scripts and tools to
validate email addresses.

Information on captcha implementations at the City can be requested by
contacting the Department of Innovation and Technology.

Hidden Fields
Hidden form fields are normally used to store server generated data. As is the
case with the client-side validation, this puts the security—or integrity of the
data—on the web browser thus losing the control on the server. A malicious user
can easily use a proxy server to manipulate any POST data that is in
transmission between the web browser and the server.

Developers should exercise caution when using hidden form fields and ensure
that the logic of the application does not rely on the data stored in hidden form
fields for functionality that drives the flow of the application. The following are
examples of what not to do:

• storing the price of an item in a commerce application
• storing the user id or role of an authenticated user and using that data to

determine access control for the application
• state of an authenticated session, e.g. loggedIn=true

ASPS V3.1 20110415 Page 8 of 17

Username Enumeration
Keeping in line with maintaining the integrity of the applications and
confidentiality of data, developers should make additional efforts to avoid
disclosing any information relating to the end user. One of the ways that this can
be implemented is in how application generated error messages and password
recovery methods are implemented and displayed. For example, messages
displayed on failed login attempts should not inform the end user that the
password was incorrect only. Messages indicating the password was incorrect
inform an attacker that the username was correct. An attacker can now begin a
dictionary attack once the username is known.

Password recovery processes should also require additional information rather
than just a username prior to presenting the user with the secret question. This
also allows an attacker to assume that the username was correct.

Information Disclosure
From time to time developers may need to interact with vendors or the public via
a forum/bulletin to troubleshoot an issue. City of Chicago infrastructure
information such as server names, IP addresses, or detailed layouts should not
be shared with these outside sources unless approved by the DoIT
administration team. Furthermore, it should be a standard practice to use
hostnames and not IP address when distributing test URLS

Developers will often post configuration files such as web.xml, properties files, or
similar on forums for review by others. The process of scrubbing should be
applied in these cases. Scrubbing involves removing information that pertains to
an organization from the file while still maintaining enough configuration
information to properly diagnose the problem. For example, IP addresses, server
names, database credentials or versioning information, and the like should never
be posted as is. IP addresses should be replaced by 12.34.56.78 or xx.x.x.x or
similar. Server names and database credentials should be replaced with generic
information such as username=username, password=password, serverOne,
serverTwo, etc.

Information—such as logs files and configuration files—supplied to vendors such
as BEA, FileNet, or others should be carefully reviewed in order to determine if
any personal customer information is contained within the file. Credentials for
QA and Production systems should always be removed from any information
submitted to vendors.

If there is any doubt over the classification of data, please direct any concerns to
one of the DoIT contacts listed in the Contacts section of this appendix.

Page Caching
Developers must ensure that pages that process or display private or sensitive
information contain the appropriate no-cache settings to avoid saving any private
or sensitive information on the customers computer.

Examples include purging form field data so that private and sensitive data is not
available when a browsers back button is used or when temporary internet files
are viewed on a computer.

ASPS V3.1 20110415 Page 9 of 17

Defaults
Default configuration parameters and values should not be used for any
application that transmits or processes private or sensitive data.

HTTPS
Any page that handles Confidential Information including pages that require a
user to authenticate MUST be processed under a Secure Sockets Layer. Many
people use the same password for various applications and the compromising of
one application may facilitate the compromising of another more important
application. Furthermore, applications that handle Confidential information must
enable their cookie’s “Secure” attribute so that cookies used by the application
are not sent in clear text. Setting this attribute prevents the browser from sending
the cookie to the server over an unencrypted link.

End users will be on both public and private networks and may be susceptible to
a packet sniffing program controlled by an attacker. A packet sniffing program
captures network data in transmission on the home network to its final
destination. When this data is passed in plain text, a packet sniffer will a result
similar to the following example.

0000 00 13 02 d1 eb 89 00 12 17 04 f2 71 08 00 45 00 q..E.
0010 00 4d 58 5b 40 00 36 06 42 d2 42 b4 a3 bb c0 a8 .MX[@.6.B.B.....
0020 02 66 00 15 08 dc 9f b5 b1 74 7c 42 53 6d 50 18 .f.......t|BSmP.
0030 16 d0 b0 76 00 00 33 33 31 20 55 73 65 72 20 77 ...v..331 User w
0040 68 73 66 20 4f 4b 2e 20 50 61 73 73 77 6f 72 64 hsf OK. Password
0050 20 72 65 71 75 69 72 65 64 0d 0a required..

The above example is a capture of an FTP connection with the username of whsf
(the password has been withheld).

Invalid Filenames
During development, it is common to start working on a new version of a file and
renaming the original file with an extension of .bak, .txt, .old, etc. This should be
avoided at all times. Attackers often employ tools capable of file type probes. A
file type probe crawls a website and then attempt to render the recorded pages
with extensions of .bak, .txt, .old, etc. If successful, a JSP page that contained
server side comments and other information has now been rendered in plain text
over a web browser.

ASPS V3.1 20110415 Page 10 of 17

Compliance
Illinois Personal Information Protection Act

Under the Illinois Personal Information Protection Act the City of Chicago
is defined as a “data collector” and conforms fully to this Act.

HIPAA and HITECH Acts
Any project that stores, processes, or transmits patient data must meet
the standards as described in the Health Insurance Portability and
Accountability Act (HIPAA) and the Health Information Technology for
Economic and Clinical Health (HITECH) Act. Data owners and data
custodians must ensure that secure procedures are used during the
creation, transmission, storage, processing, and disposing of patient
data.

 PCI

Projects handling payment card information must meet the standards set
forth by the Payment Card Industry Data Security Standard. The PCI
DSS has established twelve requirements for transmission, processing,
and storage of payment card information. Developers must meet and
ensure that the applications being developed adhere to the following
requirements when working with payment card information:

• Requirement 2: Do not use vendor-supplied defaults for system
passwords and other security parameters.

• Requirement 3: Protect stored cardholder data by masking all but the last
four credit card numbers in any display or printout

• Requirement 4: Encrypt transmission of cardholder data across open,
public networks.

• Requirement 6: Develop and maintain secure systems and applications
See Appendix A: PCI Supplement for detailed requirements.

The PCI DSS can be downloaded as a read and copy version only for
study purposes by visiting the following link:
https://www.pcisecuritystandards.org/

ASPS V3.1 20110415 Page 11 of 17

https://www.pcisecuritystandards.org/

External Vulnerability Assessment (Ethical Hacks)
The City of Chicago conducts various external and internal vulnerability
assessment audits in order to identify vulnerabilities that may compromise
the confidentiality, integrity, or availability of data. External audits in a typical
year include, at a minimum, an audit of financial systems, an audit of PCI
systems, at least one ethical hack test, and monthly vulnerability scans.
Internal vulnerability audits in a typical year include, at a minimum, monthly
network/server vulnerability scans, internal HIPAA audits, responses to
IDS/IPS alerts and event-driven application vulnerability scans.

Refer to the Vulnerability and Remediation Policy and Procedures in the
Security Intranet Portal for the latest policy regarding vulnerability
assessments and remediation.

Most of these audits produce a vulnerability risk rating. It is expected that
remediation deployment for vulnerabilities with a risk rating above "High"
must be addressed as soon as possible but no more than 30 days from the
date the vulnerability was found. Those with a risk rating of "Medium" must
be addressed within 90 days. Since identification of a vulnerability cannot
always be anticipated, your project manager must be informed if remediation
of vulnerabilities will impact your project. By following coding practices in the
Application Security Standards Manual and by pro-actively obtaining
vulnerability scan reports as part of your SDLC, you will dramatically reduce
delays related to the required remediation of vulnerabilities identified with
your application after it is migrated to production.

Application Security Scan

As part of the City of Chicago Development Standards, developers must
request an application security scan for applications being deployed to
the production environment prior to deployment. This should coincide
with other performance testing such as load tests. The administration
team will request the results of the security scan prior to deploying the
new or updated application to production. Applications must not have
any vulnerabilities or possible vulnerabilities with a severity level greater
than medium. The severity levels are: info, low, medium, high, and
critical. A sample report is available upon request from the
administration team.

NOTE: Certain application frameworks provide “catch all” responses for
system or user generated error. While this is a not only a security but a
development best practice, it does provide a conflict with the automated
application security scan. If such configuration exists, it should be
disabled during the scanning process in QA. Developers should make
note to enable it prior to going to production.

.NET example: <customErrors mode="Off" />��(file: web.config)

Confidentiality and Acceptable Use Agreement
Each developer and/or company is responsible for reading and signing
the City of Chicago Confidentiality and Acceptable Use Agreement.
Developers are required to abide by this Statement throughout their
relationship with the City of Chicago.

ASPS V3.1 20110415 Page 12 of 17

Developer Responsibilities
Security Awareness

Apart from ensuring that City of Chicago projects developed by City of
Chicago developers are meeting security guidelines and standards,
developers should be monitoring security patches to frameworks,
libraries, commercial applications, and any other resource utilized by the
City of Chicago. Security awareness should be practiced by
implementing a defense in depth approach and not relying on the
underlying framework as the only security layer.
Examples:
• Microsoft .NET vulnerability
• FileNet Workplace – XSS found by the City of Chicago
• BEA Weblogic Multiple Vulnerabilities

Developers must become familiar with the Open Web Application
Security Project (OWASP) at least to the extent of understanding that
many of our standards are based upon the best practices identified by
the project. More information is available at www.owasp.org. In addition
to highlighting the 10 ten application security risks, you will find
resources such as the OWASP Developer Guide, Testing Guide, and
Code Review Guide.

Developers should also become familiar with the CWE/SANS Top 25
Software Errors. Along with the list, the site provides discussions,
technical details, code examples, detection methods and references.
More information is available at http://www.sans.org/top25-software-
errors/.

Contacts
• Douglas Hurdelbrink – douglas.hurdelbrink@cityofchicago.org
• Thomas Vari – tvari@cityofchicago.org
• Jonathan Villa – jvilla@cityofchicago.org

Glossary
• Developer – any employee or consultant serving as a development, design,

administration, or management resource for any City of Chicago information
technology project.

• Vendor – Any commercial solution provider such as BEA, FileNet, Microsoft,
Oracle, Red Hat, etc.

• Data custodian – any resource responsible for the administration or development
of storage devices that persist data such as a database, network storage, or local
disk as well as transmit or processes data.

• Developer – any employee or consultant serving as a development, design,
administration, or management resource for any City of Chicago information
technology project.

• Vendor – Any commercial solution provider such as BEA, FileNet, Microsoft,
Oracle, Red Hat, etc.

• Data custodian – any resource responsible for the administration or development
of storage devices that persist data such as a database, network storage, or local
disk as well as transmit or processes data.

• Defaults – predetermined entries an application will use to populate fields with no
source input data or replace null values.

ASPS V3.1 20110415 Page 13 of 17

http://www.microsoft.com/technet/security/Bulletin/MS05-004.mspx
http://secunia.com/advisories/15486/?show_all_related=1#related
http://www.owasp.org/
mailto:douglas.hurdelbrink@cityofchicago.org?subject=Question%20regarding%20Security%20Standards%20for%20Development
mailto:tvari@cityofchicago.org?subject=Question%20regarding%20Security%20Standards%20for%20Development
mailto:jvilla@cityofchicago.org?subject=Question%20regarding%20Security%20Standards%20for%20Development

Appendix A: PCI Supplement

The following procedures (as identified in the PCI DSS Requirements and
Security Assessment Procedures v 2.0) must be adhered to:

3.1 Cardholder data storage is not allowed unless the storage solution was
reviewed by a QSA or approval has been obtained from the DoIT Manager
of Custom Development and the DoIT Security Architect. In the case where
storage of cardholder data is approved:

• Cardholder data must not be retained if it is not needed for
legal, regulatory, or business requirements. In some isolated
cases, cardholder data may be needed to be held for 2 days
for resolving conflicts.

• When cardholder data is no longer needed, it must be
disposed of using proper techniques to make sure that the
cardholder data cannot be made available. (Also see 9.10)

• The application support team must verify that cardholder data
does not exceed business retention requirements no less
than quarterly.

3.4 The storage of PAN data is not allowed unless the storage solution was
reviewed by a QSA or approval has been obtained from the DoIT Manager
of Custom Development and the DoIT Security Architect. In the case where
storage of the PAN is approved, the PAN must be rendered unreadable
using one of the following methods:

• One-way hashes based on strong cryptography
• Truncation
• Index tokens and pads, with pads being securely stored
• Strong cryptography, with associated key-management

processes and procedures

6.3 Develop software applications in accordance with PCI DSS and based
on industry best practices, and incorporate information security
throughout the software development lifecycle. The processes must
include the following:

6.3.1 Custom application accounts, user IDs and/or passwords are
removed before system goes into production or is released to customers.
6.3.2a All custom application code changes must be reviewed (using
either manual or automated processes) as defined in PCI DSS 2.0.
- Code changes are reviewed by individuals other than the originating
code author, and by individuals who are knowledgeable in code review
techniques and secure coding practices.
-Code reviews ensure code is developed according to secure coding
guidelines (See PCI DSS requirement 6.5).
-Appropriate corrections are implemented prior to release.
-Code review results are reviewed and approved by the Manager of
Development (or his designate) prior to release.

Appendix A: PCI Supplement (cont’d)

ASPS V3.1 20110415 Page 14 of 17

6.4 Follow change control processes and procedures for all changes to
system components. The processes must include the following:

6.4.1 Non-production environments must be separate from the production
environment and access controls must be in place to enforce the
separation.
6.4.2 There must be a separation of duties between personnel assigned
to the non-production environment and those assigned to the production.
environments unless an alternative is approved by a QSA.
6.4.3 Production PANs must not be used in non-production environments.
If an explicit exception is made by the Manager of Custom Development,
production PANs must be removed prior to migration to production.
6.4.4 Furthermore, test data and accounts must be removed from a
production environment before the production system becomes active.
6.4.5 Change control procedures for the implementation of security
patches and software modifications must contain the following:

 6.4.5.1 Documentation of impact.
6.4.5.2 Documented change approval by authorized parties.
6.4.5.3 Functionality testing to verify that change does not

adversely impact the security of the system.
6.4.5.4 Back-out procedures.

6.5 Develop all applications based on secure coding guidelines such as the
Open Web Application Security Standard, the SANS CWE Top 25 or CERT
Secure Coding. Safeguards must be in place to explicitly address, at a
minimum, the following vulnerabilities:
 6.5.1 Injection flaws, particularly SQL injection

 (E.g. validate input to verify user data cannot modify meaning of
commands and queries, utilize parameterized queries, etc.)

 6.5.2 Buffer overflow
(E.g. Validate buffer boundaries and truncate input strings)

6.5.3 Insecure cryptographic storage (E.g. Prevent cryptographic flaws)
6.5.4 Insecure communications (E.g. Properly encrypt all authenticated

and sensitive communications)
 6.5.5 Improper error handling

(E.g. Do not leak information via error messages or other means.)
6.5.6 All “High” vulnerabilities as identified in PCI DSS Requirement 6.2.
6.5.7 Cross-site scripting (XSS)
 (E.g. Validate all parameters before inclusion, utilize context-

sensitive escaping, etc.)
6.5.8 Improper Access Control, such as insecure direct object references,

failure to restrict URL access, and directory traversal
 (E.g. Properly authenticate users and sanitize input, Do not

expose internal object references to users.)
6.5.9 Cross-site request forgery (CSRF)

 (E.g. Do not reply on authorization credentials and tokens
 automatically submitted by browsers.)

7.2 All system components within PCI scope must have access control
systems in place.

ASPS V3.1 20110415 Page 15 of 17

Appendix A: PCI Supplement (cont’d)

8.1 All users must have unique IDs for access to system components
that are within PCI scope. Furthermore, the accounts their associated
passwords must not be shared.

8.3 All remote access by administrators must use two-factor
authentication for remote access. (Also see 12.3.x)

9.10 Media containing cardholder data must be destroyed when it is no
longer needed for business or legal reasons as follows:

9.10.1 Hard-copy materials must be cross-cut shredded, incinerated or
pulped such that there is reasonable assurance that the hard-copy
materials cannot be reconstructed. Storage containers used for
information to be destroyed must have a lock to prevent access to
its contents.

9.10.2 Cardholder data on electronic media must be rendered
unrecoverable via a secure wipe program in accordance with
industry-accepted standards for secure deletion such as NIST or
otherwise physically destroying the media (for example,
degaussing.)

12.3 The project manager for all PCI related applications must assure
that the following arrangements are made with respect to their PCI
project’s infrastructure:

12.3.4 All PCI components must include proper asset management
including the proper labeling of devices.

12.3.6 All PCI components must be installed in approved PCI network
security zones.

12.3.8 All remote-access technologies must use software approved by
DoIT and must have an automatic disconnect after 30 minutes of
inactivity.

12.3.9 Remote-access technologies for vendors that are not part of the
City Workforce (i.e. employees/consultants) must be activated
only when needed by vendors, with deactivation after use.

12.6 All employees and consultants who work with PCI data must
participate in the City’s Security Awareness program as follows:

12.6.1 Attending security awareness training upon hire and at least
annually is required. Additional security training awareness
methods are also available. They include the City’s Intranet
Security Portal (where policies, procedures, standards, and
training materials are posted), a Security Reminder Page, articles
in the DoIT newsletter and event driven emails regarding security.

12.6.2 Acknowledging (in writing or electronically) at least annually that
they have read and understand the City’s Information Security
Policy.

ASPS V3.1 20110415 Page 16 of 17

ASPS V3.1 20110415 Page 17 of 17

Appendix B: HIPAA Supplement

1.0 HIPAA data is classified as Confidential therefore all City
policies related to the protection of Confidential data reflect the
minimum requirements for protecting HIPAA data. In many
cases, the policies and procedures documented to protect PCI
data reflect best practices that should be applied to protecting
any Confidential data.

2.0 All project managers for HIPAA related projects must be familiar

with HIPAA regulations and the City’s HIPAA related policies.
(These polices are available on the City’s Security Intranet Site).
A CDPH HIPAA checklist (which may be obtained from CDPH)
has been created to document many of the implementation
requirements. All project managers for HIPAA related projects
must complete the CDPH HIPAA checklist. An approval of the
document (or a granted extension) from CDPH HIPAA Officers is
required before moving an application to production.

3.0 All project managers for HIPAA related projects must assure that

the infrastructure components for HIPAA related projects are
placed in DoIT approved HIPAA security zones that are protected
with approved firewalls and monitoring techniques. The project
manager must assure that each tier (Web, Application, DB, and
Network) has a person assigned to address vulnerabilities and
patching requirements according to the City’s policy.

4.0 All rules for accessing HIPAA data must use access control

procedures which are auditable. Furthermore, remote access
must be consistent with methods approved for access to
Confidential data.

5.0 All employees and consultants who work with PCI Data must

participate in the City’s Security Awareness program as follows:

3.1 Attending HIPAA security awareness training upon hire (for a HIPAA
project) and at least annually are required. Additional security
training awareness methods are also available. They include the
City’s Intranet Security Portal (where policies, procedures,
standards, and training materials are posted), a Security
Reminder Page, articles in the DoIT newsletter and event driven
emails regarding security.

 3.2 Acknowledging (in writing or electronically) at least annually that
they have read and understand the City’s Information Security
Policy.

	Application Security Policy and Standards
	Revisions
	Introduction
	Purpose
	Data Classification
	General Concerns
	SQL Injection
	Insecure Cryptographic Storage
	As required by the City of Chicago’s Information Security Policy, data transmitted, processed, or stored by an application must be encrypted using an encryption algorithm approved by the City of Chicago’s policy if the data falls under a classification requiring encryption. Examples of Confidential information that must be protected include Social Security numbers and credit card numbers. Many existing encryption algorithms have become obsolete or have been reclassified as weak algorithms. It is the responsibility of the developer to avoid using insecure cryptographic algorithms while processing, transmitting, or storing data. Examples of insecure cryptographic algorithms for both encryption and hashing data include DES, WEP, MD5 and RC4. This list should not be considered complete therefore referring to the City of Chicago’s Cryptographic Policy and Standards document is required.
	Cross-Site Request Forgery
	Improper Access Control
	Insecure Direct Object References
	Cross Site Scripting
	Unhandled Exceptions
	Comments
	Validation
	Forms
	Captchas
	Hidden Fields
	Username Enumeration
	Information Disclosure
	Page Caching
	Defaults
	HTTPS
	Invalid Filenames
	Compliance
	Developer Responsibilities

	Contacts
	Glossary

