City of Chicago

O2022-2354
Office of the City Clerk

Document Tracking Sheet

Meeting Date:

Sponsor(s):
Type:
Title:

Committee(s) Assignment:

7/20/2022
Misc. Transmittal
Ordinance
Zoning Reclassification Map No. 12-I at 2833 W 47th St, 2749-2757, 2749-2745 W 47th St and 4717-4723 S California Ave - App No. 21090
Committee on Zoning, Landmarks and Building Standards

BE IT ORDAINED BY THE CITY COUNCIL OF THE CITY OF CHICAGO

SECTION 1. That the Chicago Zoning Ordinance be amended by changing all of the C33, Commercial, Manufacturing and Employment District, B3-1, Community Shopping District and M1-2, Limited Manufacturing/Business Park District symbols and indications as shown on Map No. 12-I in the area bounded by:

> West $47^{\text {th }}$ Street; a line 49.9 feet east of and parallel to South California Avenue; a line 97.85 feet south of and parallel to West $47^{\text {th }}$ Street; a line 99.9 feet east of and parallel to South California Avenue; West 47 ${ }^{\text {th }}$ Street; a line 149.9 feet east of and parallel to South Califormia Avenue; a line 97.85 feet south of and parallel to West $47^{\text {th }}$ Street; South Fairfield Avenue; a line 273.62 fect south and parallel to West 47th Strect; a line 127.8 feet west of and parallel to South Fairfield Avenue; a line 249.71 feet south of and parallel to West $47^{\text {th }}$ Strect; South California Avenue; West $47^{\text {th }}$ Place; a line 350 fect west of and parallel to South California Avenue; a line 311 feet south of and parallel to West 47th Street; and a line 329 feet west of and parallel to South California Avenue

to those of a C3-3, Commercial, Manufacturing and Employment District.
SECTION 2. That the Chicago Zoning Ordinance be amended by changing all of the C33, Commercial, Manufacturing and Employment District symbols and indications as shown on Map No. 12-I in the area bounded by:

> West $47^{\text {th }}$ Street; a line 49.9 feet east of and parallel to South California Avenue; a line 97.85 feet south of and parallel to West $47^{\text {th }}$ Street; a line 99.9 feet east of and parallel to South California Avenue; West $47^{\text {th }}$ Street; a line 149.9 feet east of and parallel to South California Avenue; a line 97.85 feet south of and parallel to West $47^{\text {th }}$ Street; South Fairfield Avenue; a line 273.62 feet south and parallel to West 47 th Street; a line 127.8 feet west of and parallel to South Fairficld Avenue; a line 249.71 fect south of and parallel to West $47^{\text {th }}$ Street; South California Avenue; West $47^{\text {th }}$ Place; a line 350 feet west of and parallel to South California Avcnuc; a linc 311 fcet south of and parallcl to West 47 th Street; and a line 329 feet west of and parallel to South California Avenue
to those of Business Planned Development No. \qquad which is hereby established in the area described above, subject to such use and bulk regulations as are set forth in the Plan of Development herewith attached and made a part thereof and to no others.

SECTION 3. This Ordinance shall be in force and effect from and after its passage and due publication.

Address: 2833 W. 47 ${ }^{\text {th }}$ Street; 2749-2757 and 2749-2745 W. 47 ${ }^{\text {th }}$ Street and 4717-4723 S. California Avenue

PLANNED DEVELOPMENT STATEMENTS

1. The area delineated herein as Planned Development Number TBD, (Planned Development) consists of approximately 236,165 square feet of property which is depicted on the attached Planned Development Boundary and Property Line Map (Property) and is owned or controlled by the Applicant, Healthy Brighton Title Holding Corporation, an Illinois not-forprofit corporation.
2. The requirements, obligations and conditions contained within this Planned Development shall be binding upon the Applicant, its successors and assigns and, if different than the Applicant, the legal title holders and any ground lessors. All rights granted hereunder to the Applicant shall inure to the benefit of the Applicant's successors and assigns and, if different than the Applicant, the legal title holder and any ground lessors. Furthermore, pursuant to the requirements of Section 17-8-0400 of the Chicago Zoning Ordinance, the Property, at the time of application for amendments, modifications or changes (administrative, legislative or otherwise) to this Planned Development are made, shall be under single ownership or designated control. Single designated control is defined in Section 17-8-0400.
3. All applicable official reviews, approvals or permits are required to be obtained by the Applicant or its successors, assignees or grantees. Any dedication or vacation of streets or alleys or grants of easements or any adjustment of the right-of-way shall require a separate submittal to the Department of Transportation on behalf of the Applicant or its successors, assigns or grantees.

Any requests for grants of privilege, or any items encroaching on the public way, shall be in compliance with the Planned Development.

Ingress or egress shall be pursuant to the Planned Development and may be subject to the review and approval of the Departments of Planning and Development and Transportation. Closure of all or any public street or alley during demolition or construction shall be subject to the review and approval of the Department of Transportation.

Pursuant to a negotiated and executed Perimeter Restoration Agreement ("Agreement") by and between the Department of Transportation's Division of Infrastructure Management and the Applicant, the Applicant shall provide improvements and restoration of all public way adjacent to the property, which may include, but not be limited to, the following as shall be reviewed and determined by the Department of Transportation's Division of Infrastructure Management:

- Full width of streets
- Full width of alleys
- Curb and gutter
- Pavement markings
- Sidewalks
- ADA crosswalk ramps
- Parkway \& landscaping

The Perimeter Restoration Agreement must be executed prior to any Department of Transportation and Planned Development Part II review permitting. The Agreement shall reflect that all work must comply with current Rules and Regulations and must be designed and constructed in accordance with the Department of Transportation's Construction Standards for work in the Public Way and in compliance with the Municipal Code of Chicago Chapter 10-20. Design of said improvements should follow the Department of Transportation's Rules and Regulations for Construction in the Public Way as well as The Street and Site Plan Design Guidelines. Any variation in scope or design of public way improvements and restoration must be approved by the Department of Transportation.
4. This Plan of Development consists of 17 Statements: a Bulk Regulations Table; an Existing Zoning Map; an Existing Land-Use Map; an Existing Aerial Map; a Planned Development Boundary and Property Line Map; a Sub-Area Map; Site Plan;; Landscape Plan; Landscape Plan Schedules; Building Elevations (North, South, East and West); 3D Massing (Northeast, Southeast and Southwest) prepared by Urban Works and dated (date of Plan Commission presentation); Sustainable Matrix; Traffic Impact Study prepared by Terra Engineering Ltd. And dated (date of plan Commission presentation) and Project Narrative submitted herein. Full-sized copies of the Site Plan, Landscape Plan and Building Elevations are on file with the Department of Planning and Development. In any instance where a provision of this Planned Development conflicts with the Chicago Building Code, the Building Code shall control. This Planned Development conforms to the intent and purpose of the Chicago Zoning Ordinance, and all requirements thereto, and satisfies the established criteria for approval as a Planned Development. In case of a conflict between the terms of this Planned Development Ordinance and the Chicago Zoning Ordinance, this Planned Development shall control.
5. In each of the following Sub-Areas, the following uses shall be permitted in this Planned Development:

Sub-Area A: Medical Service; Day Care (Adult); Restaurant, Limited; Outdoor patio (if located at grade level); Retail Sales, General; and Accessory Parking.

Sub-Area B: Medical Service; Day Care (Adult); Restaurant, Limited; Outdoor patio (if located at grade level); Retail Sales, General; and Accessory Parking.

Sub-Area C: Accessory Parking.
Sub-Area D: Medical Service; Office; Retail Sales, General and Community Garden.
6. On-Premise signs and temporary signs, such as construction and marketing signs, shall be permitted within the Planned Development, subject to the review and approval of the Department of Planning and Development. Off-Premise signs are prohibited within the boundary of the Planned Development.
7. For purposes of height measurement, the definitions in the Chicago Zoning Ordinance shall apply. The height of any building shall also be subject to height limitations, if any, established by the Federal Aviation Administration.
8. The maximum permitted floor area ratio (FAR) for the Property shall be in accordance with the attached Bulk Regulations and Data Table. For the purpose of FAR calculations and measurements, the definitions in the Zoning Ordinance shall apply. The permitted FAR identified in the Bulk Regulations and Data Table has been determined using a net site area of 191,925 square feet and a base FAR of 2.0.
9. Upon review and determination, Part II Review, pursuant to Section 17-13-0610, a Part II Review Fee shall be assessed by the Department of Planning and Development. The fee, as determined by staff at the time, is final and binding on the Applicant and must be paid to the Department of Revenue prior to the issuance of any Part II approval.
10. The Site and Landscape Plans shall be in substantial conformance with the Landscape Ordinance and any other corresponding regulations and guidelines, including Section 17-130800. Final landscape plan review and approval will be by the Department of Planning and Development. Any interim reviews associated with site plan review or Part II reviews, are conditional until final Part II approval.
11. The Applicant shall comply with Rules and Regulations for the Maintenance of Stockpiles promulgated by the Commissioners of the Departments of Streets and Sanitation, Fleet and Facility Management and Buildings, under Section 13-32-085, or any other provision of the Municipal Code of Chicago.
12. The terms and conditions of development under this Planned Development ordinance may be modified administratively, pursuant to Section 17-13-0611-A, by the Zoning Administrator upon the application for such a modification by the Applicant, its successors and assigns and, if different than the Applicant, the legal title holders and any ground lessors.
13. The Applicant acknowledges that it is in the public interest to design, construct and maintain the project in a manner which promotes, enables and maximizes universal access throughout the Property. Plans for all buildings and improvements on the Property shall be reviewed and approved by the Mayor's Office for People with Disabilities to ensure compliance with all applicable laws and regulations related to access for persons with disabilities and to promote the highest standard of accessibility.
14. The Applicant acknowledges that it is in the public interest to design, construct, renovate and maintain all buildings in a manner that provides healthier indoor environments, reduces operating costs and conserves energy and natural resources. The Applicant shall obtain the number of points necessary to meet the requirements of the Chicago Sustainable Development Policy, in effect at the time the Part II review process is initiated for each improvement that is subject to the aforementioned Policy and must provide documentation verifying compliance.
15. The Applicant acknowledges that it is the policy of the City to maximize opportunities for Minority and Women-owned Business Enterprises ("M/WBEs") and city residents to compete for contracts and jobs on construction projects approved through the planned development process. To assist the city in promoting and tracking such M/WBE and city resident participation, an applicant for planned development approval shall provide information at three points in the city approval process. First, the applicant must submit to DPD, as part of its application for planned development approval, an M/WBE Participation Proposal. The M/WBE Participation Proposal must identify the applicant's goals for participation of certified M/WBE firms in the design, engineering and construction of the project, and of city residents in the construction work. The city encourages goals of (i) 26% MBE and 6% WBE participation (measured against the total construction budget for the project or any phase thereof), and (ii) 50% city resident hiring (measured against the total construction work hours for the project or any phase thereof). The M/WBE Participation Proposal must include a description of the Applicant's proposed outreach plan designed to inform M/WBEs and city residents of job and contracting opportunities. Second, at the time of the Applicant's submission for Part II permit review for the project or any phase thereof, the Applicant must submit to DPD (a) updates (if any) to the Applicant's preliminary outreach plan, (b) a description of the Applicant's outreach efforts and evidence of such outreach, including, without limitation, copies of certified letters to M/WBE contractor associations and the ward office of the alderman in which the project is located and receipts thereof; (c) responses to the Applicant's outreach efforts, and (d) updates (if any) to the applicant's M/WBE and city resident participation goals. Third, prior to issuance of a Certificate of Occupancy for the project or any phase thereof, the Applicant must provide DPD with the actual level of M/WBE and city resident participation in the project or any phase thereof, and evidence of such participation. In addition to the forgoing, DPD may request such additional information as the department determines may be necessary or useful in evaluating the extent to which M/WBEs and city residents are informed of and utilized in planned development projects. All such information will be provided in a form acceptable to the Zoning Administrator. DPD will report the data it collects regarding projected and actual employment of M/WBEs and city residents in planned development projects twice yearly to the Chicago Plan Commission and annually to the Chicago City Council and the Mayor.
16. This Planned Development shall be governed by Section 17-13-0612. Should this Planned Development ordinance lapse, the Zoning Administrator shall initiate a Zoning Map Amendment to rezone the property to (underlying zoning that formed the basis of this Planned Development).
17. Prior to the Part II Approval (Section 17-13-0610 of the Chicago Zoning Ordinance) in SubArea D, the Applicant shall submit a site plan, landscape plan and building elevations for the specific Sub-Area(s) for review and approval by the Department of Planning and Development (DPD). Review and approval by DPD is intended to assure that specific development components substantially conform with the Planned Development (PD) and to assist the City in monitoring ongoing development. Sub-Area Site Plan Approval Submittals (Section 17-13-0800) need only include that portion of the Property for which approval is being sought by the Applicant. If the Applicant is seeking approval for a portion of the Property that represents less than an entire Sub-Area, the Applicant shall also include a site
plan for that area of the Property which is bounded on all sides by either public Rights-ofWay or the boundary of the nearest Sub-Area. The site plan provided shall include all dimensioned and planned street Rights-of-Way.

No Part II Approval for any portion of the Property shall be granted until Site Plan approval has been granted. Following approval by DPD, the approved Sub-Area Site Plan Approval Submittals, supporting data and materials shall be made part of the main file and shall be deemed to be an integral part of the PD.

After approval of the Sub-Area Site Plan, changes or modifications may be made pursuant to the provisions of Statement 17. In the event of any inconsistency between approved plans and the terms of the PD, the terms of the PD shall govern. Any Sub Area Site Plan Approval Submittals shall, at a minimum, provide the following information:

- fully-dimensioned site plan (including a footprint of the proposed improvements);
- fully-dimensioned building elevations;
- fully-dimensioned landscape plan(s); and,
- statistical information applicable to the subject Sub-Area, including floor area, the applicable floor area ratio, uses to be established, building heights and setbacks.

Sub Area Site Plan Approval Submittals shall include all other information necessary to illustrate substantial conformance to the PD.

BUSINESS PLANNED DEVELOPMENT NO. TBD
 BULK REGULATIONS AND DATA TABLE

Gross Site Area (sf): 236,165
Area of Public Right-of-Way (sf): 44,241
Net Site Area (sf): 191,924
Subarea A (sf): 69,758
Subarea B (sf): 68,962
Subarea C (sf): 43,620
Subarea D (sf): 9,584
Maximum Floor Area Ratio: 2.00
Subarea A: 50
Subarea B: 1.00
Subarea C: 0.00
Subarea D: 2.00
Minimum Setbacks:
Sub-Area A and B:
West $47^{\text {th }}$ Street 14'-8"
South California Avenue $8^{\prime}-7^{\prime \prime}$
$48^{\text {th }}$ Place 21'-5 5/8"
Western boundary 115'-3"
Sub-Area C and D:
West $47^{\text {h }}$ Street 20'-7"
South Fairfield Avenue 6'-0"
Southern boundary 8'-3"
South California Avenue 6'-0"
Maximum Building Height:
Subarea A: 34' to top of parapet wall
Subarea B:
34 ' to top of parapet wall
Subarea C: N/A
Subarea D: N/A

Minimum Number of Off-Street Parking and
Loading:

| Subarea A: | | | |
| :--- | ---: | ---: | ---: | ---: |
| | Cars | Bikes | Loading |
| TOTAL | 69 | 18 | 1 |

Subarea B:			
	Cars	Bikes	Loading
TOTAL	66	14	1

| Subarea C: | | | Loading |
| :--- | ---: | ---: | ---: | ---: |
| | Cars | Bikes | 0 |
| TOTAL | 94 | 0 | |

Subarea D:			
	Cars	Bikes	Loading
TOTAL	0	0	0

Footnote I: Per the survey, there is 77,223 square fect in the cxiting right-of-way adjacent to the Property. The Applicant proposes to dedicate 17,136 square feet of the Property to the existing right-of-way resulting in a total Area of Public Rights-of-Way of 94,359 square fect

Applicant: Healthy Brighton Title Holding Corporation, an Illinois not-for-profit corporation Address: 2833 W. $47^{\text {th }}$ Street; 2759-2757 and 2749-2745 W. 47 ${ }^{\text {th }}$ Street and 4717-4723 S. California Ave. Introduced: July 20, 2022

UrbanWorks ,

[^0]APPLICANT: HEALTHY BRIGHTON TITLE HOLDING CORPORATION NFP

EXISTING AERIAL MAP
APPLICANT: HEALTHY BRIGHTON TITLE HOLDING CORPORATION NFP
APPLICANT: HEALTHY BRIGHTON TITLE HOLDING CORPORATION NFP
ADDRESS: 2833 W. $47^{\text {TH }}$ STREET; $2759-2757$ AND $2749-2745 \mathrm{~W} .47^{\text {TH }}$ STRE
INTRODUCED: JULY.20, 2022 ___
PLAN COMMISSION:

PD BOUNDARY MAP

[^1]
SUB AREA MAP
APPLICANT: HEALTHY BRIGHON TITLE HOLDING COR2745 W. 47TH STREET; AND 4717-4723 S. CALIFORNIA AVENUE ADTRODUCED ULY 20.2022
PLAN COMMISSION:

SITE PLAN
APPLICANT: HEALTHY BRIGHTON TITLE HOLDING CORPORATION NFP
ADDRESS: 2833 W. $47^{\text {TH }}$ STREET; 2759-2757 AND $2749-2745 \mathrm{~W} .47^{\text {TH }}$ STREET; AND $4717-4723$ S. CALIFORNIA AVENUE INTRODUCED: JULY 20,2022

CODE	BOTANICAL NAME	COMMON NAME	SIZE	CONTAINER
co	celtis occidentalis	COMMON HACKBERRY	2.5" CAL.	B8B
cl	Crataegus crus-galli inermis	THORNLESS COCKSPUR HAWTHORN	2.5" CAL.	B\&B
GP	GINKGO BILOBA `princeton sentry`	PRINCETON SENTRY MAIDENHAIR TREE	$2.5{ }^{\text {" CAL. }}$	B8B
GS	GLEDITSIA TRIACANTHOS InERMIS 'SKYLINE'	SKYLINE HONEY LOCUST	$2.5{ }^{\text {" CAL. }}$	B\&B
${ }^{\text {L }}$	URIODENDRON TULIPIFERA 'JFS-OZ TM	EMERALD CITY TULIP POPLAR	2.5" CAL.	B8B
PM	PLATANUS X ACERIFOLIA 'MORTON CIRCLE' TM	ExClamation london plane tree	$2.5{ }^{\text {" CAL }}$.	B8B
QB	QUERCUS BICOLOR	SWAMP WHITE OAK	2.5" CAL.	B8B
QM2	Quercus muehlenbergil	CHINKAPIN OAK	2.5' CAL.	B\&B
QR	Quercus rubra	red oak	$2.5{ }^{\prime \prime} \mathrm{CAL}$.	B\&B
Qw	QUERCUS X WAREI 'LONG' TM	fegal prince oak	$2.5{ }^{\text {" CAL. }}$	B\&B
UP	ULMUS X 'Morton glossy tm	TRIUMPH ELM	2.5" CAL.	B\&B

KEY NOTES
1. RIBBED METAL RAINSCREEN PANELS
2. \quad ACM RAINSCREEN PANELS
3. \quad (NO. NOT IN USE)
4. \quad GLASS CURTAIN WALL
5. GLASS STOREFRONT
6.
KANELIZED METAL

1 NORTHELEVATION
EXTERIOR ELEVATIONS
APPLICANT• HEALTHY BRIGHTON TITLE HOLDING CORPORATION NFP
ADDRESS: 2833 W. $47^{\text {TH }}$ STREET; $2759-2757$ AND $2749-2745 \mathrm{~W} .47^{\text {TH }}$ STREET; AND 47174723 S. CALIFORNIA AVENUE
INTRODUCED: JULY 20,2022
INTRODUCED: JULY 20, 2022
PLAN COMMISSION:
KEY NOTES
$\begin{array}{ll}\text { 1. } & \text { RIBBED METAL RAINSCREEN PANELS } \\ \text { 2. } & \text { ACM RAINSCREEN PANELS } \\ \text { 3. } & \text { (NO. NOT IN USE) } \\ \text { 4. } & \text { GLASS CURTAIN WALL } \\ \text { 5. } & \text { GLASS STOREFRONT } \\ \text { 6. } & \text { PANELIZED METAL }\end{array}$

EXTERIOR ELEVATIONS
ADDRESS: 2833 W. $47^{\text {TH }}$ STREET; $2759-2757$ AND $2749-2745 \mathrm{~W} .47^{\text {th }}$ STREET; AND 4717-4723 S. CALIFORNIA AVENUE
INTRODUCED: JULY 20.2022
PLAN COMMISSION:

1 STREETSCAPE EAST ELEVATION
STREETSCAPE ELEVATION
ADDRESS' $2833 \mathrm{~W} .47^{\text {TH }}$ STREET; $2759-2757$ AND $2749-2745 \mathrm{~W} .47^{\text {TH }}$ STREET; AND 4717-4723 S. CALIFORNIA AVENUE
PLAN COMMISSION:

[^2]

Chicago Sustainable Development Policy 2017.01.12

Flanned Development Prolects (PD) - New Construction 100 polms required

Modernte Renovation Properts
Subsumaly Renovaion Projerts

Substantal Renovation Projects
"does not apply to TIF assistande of less than 51 M (Inctuding but not tmited to TIF-NIP. TIF Purchase Rehab,
Streamined IIF and SBIF programs)
Modente Renovation Projects = propection
Moderate Renovation Projects = propects inctudiang partial or minor upgrados to buiding sytems and minor repairs to the extenoc envelope
Substantial Renovation Projects = projects including new andor upgraded building systems and extensive repars to the excerior envelops
SUSTAINABLE MATRIX
APPLICANT: HEALTHY BRIGHTON TITLE HOLDING CORPORATION NFP
ADDRESS: 2833 W. $47^{\text {TH }}$ STREET, $2759-2757$ AND $2749-2745$ W. $47^{\text {TH }}$ STREET; AND 4717-4723 S. CALIFORNIA AVENUE INTRODUCED: JULY 20,2022
PLAN COMMISSION:

PLAT OF SURVEY
APPLICANT: HEALTHY BRIGHTON TITLE HOLDING CORPORATION NFP
ADDRESS: 2833 W. 47th STREET; 2759-2757 AND 2749-2745 W. 47 Th STREET; AND 4717-4723 S. CALIFORNIA AVENUE INTRODUCED: JULY 20,2022

APPLICATION FOR AN AMENDMENT TO THE CHICAGO ZONING ORDINANCE

1. ADDRESS of the property Applicant is seeking to rezone:

2833 W. 47th Street; 2749-2757 and 2749-2745 W. 47th Street and 4717-4723 S. California Avenue
2. Ward Number that property is located in: 14
3. APPLICANT Healthy Brighton Title Holding Corporation NFP, an Illinois not-for-profit corporation

ADDRESS 1940 Western Ave., \#205 CITY Chicago
STATE IL \qquad ZIP CODE 60608 PHONE (773) 640-5792

EMAIL rgadia@esperanzachicago.org CONTACT PERSON \qquad
4. Is the applicant the owner of the property? YES \qquad
x NO
If the applicant is not the owner of the property, please provide the following information regarding the owner and attach written authorization from the owner allowing the application to proceed.

OWNER \qquad
ADDRESS \qquad CITY \qquad
STATE \qquad ZIP CODE \qquad PHONE \qquad
EMAIL \qquad CONTACT PERSON \qquad
5. If the Applicant/Owner of the property has obtained a lawyer as their representative for the rezoning, please provide the following information:

ATTORNEY
Lenny D. Asaro, Partner, FAEGRE DRINKER BIDDLE \& REATH LLP

ADDRESS
320 S. Canal, Suite 3330

CITY Chicago	STATE 1 L	ZIP CODE 60606
PHONE 312-356-5111	FAX 312-569-3000	EMAIL lenny.asaro@faegredrinker.com

6. If the applicant is a legal entity (Corporation, LLC, Partnership, ctc.) please provide the names of all owners as disclosed on the Economic Disclosure Statements.
Applicant is an llinois not-for-profit corporation
\qquad
\qquad
\qquad
\qquad
\qquad
7. On what date did the owner acquire legal title to the subject property? 2833 W .47 th Street: June 20, 2018; 2759-2757 and 2749-2745 W. 47th Street and 4717-4723 S. California Avenue: June 3, 2022
8. Has the present owner previously rezoned this property? If yes, when? No

C3-3, Commercial, Manufacturing and
9. Present Zoning District C3-3; B3-1 and M1-2 Proposed Zoning District Employment District then to a Business
10. Lot size in square feet (or dimensions) $\quad 236,165 \mathrm{sq}$. ft.
11. Current Use of the property Medical Service; vacant land
12. Reason for rezoning the property Applicant owns and operates Esperanza Health Centers ("Esperanza"). Currently, Esperanza operates a health center at southwest corner of 47th and California known as Bright Park 1. South of Brighton Park 1, Esperanza intends to develop another health center, Brighton Park 2 with parking located across the street on the east side of S. Calfornia Ave.
13. Describe the proposed use of the property after the rezoning. Indicate the number of dwelling units; number of parking spaces; approximate square footage of any commercial space; and height of the proposed building. (BE SPECIFIC)
Medical Service: Day Care (Adult); Restaurant, Limited; Outdoor patio (if located at grade level): Retail Sales, General; Accessory Parking and Community Garden.
14. The Affordable Requrements Ordinance (ARO) requires on-site affordable housing units and/or a financial contribution for residential housing projects with ten or more units that receive a zoning change which, among other triggers, increases the allowable floor area, or, for existing Planned Developments, increases the number of units (see attached fact sheet or visit www.cityofchicago.org/ARO for more information). Is this project subject to the ARO?

YES
NO $\quad x$

COUNTY OF COOK

STATE OF ILLINOIS

Ryan Gadia, CPA, Treasurer being first duly sworn on oath, states that all of the above statements and the statements contained in the documents submitted herewith are true and correct.

Signature of Applicant
Subscribed and Sworn to before me this

Notary. Public

For Office Use Only

Date of Introduction: \qquad
File Number: \qquad
Ward: \qquad

WRITTEN NOTICE
 AFFIDAVIT
 (Section 17-13-0107)

July 1, 2022

Honorable Thomas M. Tunney
Chairman, Committee on Zoning
121 North LaSalle Street
Room 304, City Hall
Chicago, Illinois 60602

Re: Zoning Amendment Application/Planned Development Application
2833 W. 47th Street; 2759-2757 and 2749-2745 W. 47th Street and 4717-4723 S. California Ave., Chicago, IL
The undersigned, LENNY D. ASARO, Attorney-Partner, Faegre Drinker Biddle \& Reath, LLP, on behalf of the Applicant, Healthy Brighton Title Holding Corporation, an Illinois not-for-profit corporation, being first duly sworn on oath deposes and states the following:

The undersigned certifies that he has complied with the requirements of Section 17-13-0107 of the Chicago Zoning Ordinance, by causing written notices to be sent to such property owners who appear to be the owners of the property within the subject area not solely owned by the Applicant, and to the owners of all property within 250 feet in each direction of the lot line of the subject property, exclusive of public roads, streets, alleys and other public ways, or a total distance limited to 400 feet. Said written notice was sent by First Class U.S. Mail, no more than 30 days before filing the application.

The undersigned certifies that the notice contained the address of the property sought to be rezoned; a statement of the intended use of the property; the name and address of the applicant; the name and address of the owner; and a statement that the applicant intends to file the application for a change in zoning on approximately July $20,2022$.

The undersigned certifies that the applicant has made a bona fide effort to determine the addresses of the parties to be notified under Section 17-13-0107 of the Chicago Zoning Ordinance, and that the accompanying list of names and addresses of surrounding property owners within 250 feet of the subject site is a complete list containing the names and addresses of the people required to be served.

Lenny D. Asaro

Partner
lenny.asaro@faegredrınker.com
Faegre Drinker Biddle \& Reath LLP 311 South Wacker Drive, Suite 4300 +1 3123565111 direct

VIA FIRST CLASS U.S. MAIL

Re: Zoning Amendment Application/Planned Development Application 2833 W. 47th Street; 2759-2757 and 2749-2745 W. 47th Street and 4717-4723 S. California Ave., Chicago, IL

Dear Property Owner:
In accordance with the requirements for an Amendment to the Chicago Zoning Ordinance, specifically Section 17-13-0107, please be informed that on or about July 20, 2022, the undersigned will file an application for a change in zoning from: C3-3, Commercial, Manufacturing and Employment District; B3-1, Community Shopping District and M1-2, Limited Manufacturing/Business Park District to C3-3, Commercial, Manufacturing and Employment District and then to a Business Planned Development on behalf of Healthy Brighton Title Holding Corporation, an Illinois not-for-profit corporation (the "Applicant") for the property located at 2833 W. 47th Street; 2759-2757 and 2749-2745 W. 47th Street and 4717-4723 S. California Ave. (the "Property"). The Applicant is the owner of the Property.

The Applicant intends to develop the Property into a medical service building known as Brighton Park 2 together with adult day care, limited restaurant, retail sales, parking community garden and accessory and incidental uses related thereto.

The Applicant is located at 1940 S. Western Ave., Chicago, IL 60608. The contact person for this application is attorney Lenny D. Asaro, Partner, Faegre Drinker Biddle \& Reath LLP, 311 S. Wacker Drive, Suite 4300, Chicago, IL 60606; Phone: 312-356-5111.

Please note that the Applicant is not seeking to rezone or purchase your property. The Applicant is required by law to send this notice because you own property within 250 feet of the Property to be rezoned.

Very truly yours,
Lemus D. Cewor
Lenny D. Asaro
Partner
Faegre Drinker Biddle \& Reath LLP

C- TERRA ESPERANZA HEALTH CENTER BRIGHTON PARK EXPANSION TRAFFIC IMPACT STUDY

PROJECT ADDRESS
California Avenue and $47^{\text {th }}$ Place
Chicago, IL 60632

PREPARED BY

Michael C. Hutchinson, P.E., PTOE

PREPARED FOR
UrbanWorks Architecture
125 South Clark Street, Suite 2070,
Chicago, Illinois 60603
DRAFT REPORT DATE
May 5, 2022

TABLE OF CONTENTS

SECTION I 1
EXECUTIVE SUMMARY 1
SECTION II 2
INTRODUCTION/SITE BACKGROUND 2
SECTION III 3
STUDY AREA 3
SECTION IV 5
EXISTING TRAFFIC CONDITIONS 5
Level of Service and Delay. 9
SECTION V 14
COMPUTATION OF BACKGROUND TRAFFIC 14
SECTION VI 15
SITE LAYOUT 15
SECTION VII 17
TRIP GENERATION 17
SECTION VIII 19
TRIP ASSIGNMENTS 19
SECTION IX 24
OPENING DAY ANALYSIS 24
SECTION X 28
PARKING AND PEDESTRIAN ANALYSIS 28
SECTION XI 32
SUMMARY AND CONCLUSIONS 32

LIST OF FIGURES

FIGURE 1 - PROJECT SITE 3
FIGURE 2 - EXISTING VEHICLE VOLUMES. 6
FIGURE 3 - EXISTING PEDESTRIAN VOLUMES 7
FIGURE 4 - PROPOSED SITE PLAN 15
FIGURE 5 - PROPOSED LOT EAST OF CALIFORNIA AVE 16
FIGURE 6 - TRIP REASSIGNMENTS 22
FIGURE 7 - SITE GENERATED TRIP ASSIGNMENTS 23
FIGURE 8 - OPENING DAY TRAFFIC 25
figure 9 - location of east parking lot in relation to ehc site 28
LIST OF TABLES
TABLE 1 - PEAK HOURS OF TRAFFIC 5
TABLE 2 - COMPARISON OF 2015 AND 2021 TRAFFIC DATA 8
TABLE 3 - VEHICULAR LEVEL OF SERVICE FOR CONTROL DELAY 11
TABLE 4 - EXISTING TRAFFIC ANALYSIS 12
TABLE 5 - TRIP GENERATION DATA 18
TABLE 6 - ESTIMATED SITE TRIPS WITH 20\% REDUCTION 19
TABLE 7 - PERCENTAGE OF VEHICLES ENTERING/EXITING NETWORK AT EXTERNAL INTERSECTIONS. 20
TABLE 8 - OPENING DAY TRAFFIC ANALYSIS 26

SECTION I

EXECUTIVE SUMMARY

TERRA Engineering has been asked to evaluate the potential traffic impact adding a new facility to the already existing Esperanza Healthcare Center (EHC). The current facility is located on the southwest corner of $47^{\text {th }}$ Street at California Avenue. The site plan would build an additional facility on the south portion of the site. The two buildings will have a combined 136 parking spaces, with six (6) of the spaces being handicapped spaces. In addition to this parking at the site, a parcel on the east side of California Avenue will be acquired and developed as an additional parking lot with 104 parking spaces.

Existing traffic was collected on December 14, 2021. This existing estimated traffic was modeled in Synchro traffic analysis software to analyze how the traffic operates in the existing conditions. Most intersections performed at acceptable levels, with the exception the eastbound movement of $47^{\text {th }}$ Street at Francisco Avenue and the eastbound left movement on California Avenue at $47^{\text {th }}$ Place. The signalized intersection of $47^{\text {th }}$ Street at California Avenue on average performs at LOS C which is considered acceptable.

The number of new vehicle trips that would be generated by the site were calculated using the Institute of Transportation Engineers (ITE) Trip Generation Manual, for a Clinic Land Use and the Gross Floor Area (GFA) projection. These proposed trips were also compared to the data collected at the site and calibrated to estimate trips throughout the course of a typical day. The newly generated trips were added and distributed throughout the study area and modeled in Synchro. The results show some movements degrade a LOS grade. One specific area of concern was the eastbound traffic along $47^{\text {th }}$ Place at California Avenue which is already severely congested at the dismissal of the adjacent high school. This movement can experience queues which block the proposed south driveway from EHC onto $47^{\text {th }}$ Place. Traffic may have trouble exiting onto $47^{\text {th }}$ Place during this time period and there is a potential that parents may use the EHC parking lot as a cut-through during these peak times.

Another key recommendation of the study would be to use the parking lot on the east side of California Avenue as the primary parking location for staff at the EHC site. Both the east and west lots appear necessary to handle the estimated parking needs for the site. Utilizing the east lot for staff parking would reduce the number of pedestrians required to cross California Avenue throughout the day which should help to increase safety when compared to having visitors and patients who turnover more often parking in the east lot.

TERRA

SECTION II INTRODUCTION/SITE BACKGROUND

TERRA Engineering has been asked to evaluate the potential traffic impact of expanding the currently existing Esperanza Health Center (EHC) to include a new 43,600 square-foot facility, additional parking to its existing parking lot, and adding a parking lot across the street. The complete address of the currently existing building is 4700 California Avenue, Chicago Illinois. The current building is located on the southwest corner of $47^{\text {th }}$ Street and California Avenue. The south half of the lot between the existing developed building and parking area and $47^{\text {th }}$ Place is currently undeveloped. Additionally, another lot across California Avenue from the existing building is proposed to be a future parking lot located on the east side of California Avenue.

Currently, the existing parking lot contains 67 parking spaces, three (3) of which are reserved Americans with Disabilities (ADA) spaces. The driveway connecting to California Avenue will be closed to vehicle traffic and a new site will be constructed to the south of the existing lot, which will contain a new building, additional parking spaces and a driveway which exits to the south to $47^{\text {th }}$ Place. The new total parking on this site will be 123 spaces with six (6) ADA spaces

The proposed parking lot on the east side of California Avenue will contain approximately 104 parking spaces. Visitors parking in this lot will be required to cross California Avenue to get to the EHC buildings. The east parking lot will include only access from South Fairfield Avenue, the existing curb cuts along California Avenue will be removed.

SECTION III STUDY AREA

The existing site is in the Brighton Park neighborhood. It is roughly bounded by $47^{\text {th }}$ Street to the north, Mansueto High School to the west, California Avenue to the east, and $47^{\text {th }}$ Place to the south. The proposed overflow parking lot on the east side of California Avenue is roughly bounded by California Avenue to the west, an alleyway to the north, Fairfield Avenue to the east, and the Davita Kidney Care to the south. The project location is shown in Figure 1. The streets in the study area are described as follows:

Figure 1 - Project site
$47^{\text {th }}$ Street is a two lane (one lane in each direction) road running in the east-west direction, which has an additional parking lane on the outside of the drive lane. It serves a mix of residential and commercial areas, as well as the Donald J Marquez Elementary school, Mansueto High School. The Illinois Department of Transportation (IDOT) functionally classifies $47^{\text {th }}$ Street Minor Arterial. It intersects with important roads such as Archer Avenue, Kedzie Ave, California Avenue, and Western Avenue. The posted speed limit on $47^{\text {th }}$ Street is 30 miles per hour (mph), but near the project site there exist schools and

TERRA
ENGINEERING LTD.
the posted speed limit is 20 mph on school days when children are present. Sidewalks exists on both sides of $47^{\text {th }}$ Street. The CTA $47^{\text {th }}$ Street has stops on $47^{\text {th }}$ Street near the site and the 94 (California) bus which serves the Western Orange Line Station has stops to the east of the site on $47^{\text {th }}$ Street. There are no designated bike lanes on $47^{\text {th }}$ Street.

California Avenue is a two-lane (one lane in each direction) road running in the northsouth direction. It primarily serves residential and commercial areas. IDOT functionally classifies California Avenue as a Major Collector. It intersects with important roads I-55, Archer Avenue, $43^{\text {rd }}$ Street, $51^{\text {st }}$ Street, and $55^{\text {th }}$ Street. It intersects with $47^{\text {th }}$ Street near the project site and forms a signalized intersection. There is no posted speed limit on California Avenue near the project site, so the speed limit is assumed to be dictated by city ordinance. There are no designated bike lanes on California Avenue. The lanes on California Avenue are approximately 20 -feet wide, which allows for on-street parking, and an additional lane for travel in areas where parking is prohibited and near intersections.
$47^{\text {th }}$ Place is a two lane (one lane in each direction) road running in the east-west direction, which allows parking on both sides of the roadway but dead-ends about 800 feet to the west of California Avenue. It serves a mix of commercial buildings, and the driveway exits and parking areas for Mansueto High School. It intersects with California Avenue as a minor street stop-controlled intersection. Sidewalks exists on both sides of $47^{\text {th }}$ Street near Mansueto high School but only on the south side of the roadway east of the school.

Mozart Street is a two-lane, one-way road allowing travel in the southward direction. It primarily serves residential areas. IDOT functionally classifies it as a local road. Mozart Street connects to $47^{\text {th }}$ Street, forming a four-legged intersection in which the Esperanza Health Center driveway forms the south leg, though the driveway is offset sightly to the east. There is no posted speed limit near the project site, so the speed limit is assumed to be dictated by city ordinance. Sidewalks exists on both sides of Mozart Street. On-street parking is allowed on both sides of the street by permit only.

Francisco Avenue is a two-lane, one-way road running in the northwardly direction. From $47^{\text {th }}$ Street, to the alleyway north of the McDonald's lot, a distance of approximately 160 feet, Francisco Avenue is a two-way street (one lane in each direction). Francisco Avenue primarily serves residential areas, and intersects with $47^{\text {th }}$ Street, forming a four-legged intersection in which the south leg is the Mansueto High School entrance. IDOT functionally classifies it as a local road. There is no posted speed limit on near the project site, so the speed limit is assumed to be dictated by city ordinance. Sidewalks exists on both sides of Mozart Street. On-street parking is allowed on both sides of the street by permit only.

SECTION IV

EXISTING TRAFFIC CONDITIONS

Traffic data was collected on Tuesday, December 14, 2021, at the following locations:

- $47^{\text {th }}$ Street at Francisco Avenue
- $47^{\text {th }}$ Street at McDonald's / Mansueto High School gated driveway
- $47^{\text {th }}$ Street at Mozart Street
- $47^{\text {th }}$ Street at California Avenue
- California Avenue at Esperanza Health Center driveway
- $47^{\text {th }}$ Place at Mansueto High school exit driveway
- $47^{\text {th }}$ Place at California Avenue

The data was collected from 7:00 AM to 7:00 PM to include the morning and evening peak hours of traffic colloquially called "rush hour," and the midday peak hour of traffic that occurs around noon. This data is included in Appendix A.

The peak hours of traffic for each intersection did not always coincide with other intersections. Although the peak hour of traffic at each intersection do not always occur simultaneously, using the volumes from the hour of highest observed traffic volume at each intersection provides a slightly more conservative calculation for intersection performance. Table 1 shows the starting time of peak hour of traffic for each intersection in the study area. Figure 2 shows the vehicle volume for each turning movement for each peak hour of traffic. Figure 3 shows the pedestrian volumes during the peak hour of vehicular traffic.

Table 1 - Peak Hours of Traffic

	AM	Midday	PM
$47^{\text {th }}$ St \& Francisco Ave	$8: 15 \mathrm{AM}$	$1: 00$ PM	$5: 30 \mathrm{PM}$
$47^{\text {th }}$ St \& McDonald's	$7: 15 \mathrm{AM}$	$12: 15 \mathrm{PM}$	$4: 30 \mathrm{PM}$
$47^{\text {th }}$ St \& Mozart St	$7: 15 \mathrm{AM}$	$12: 15 \mathrm{PM}$	$4: 30 \mathrm{PM}$
$47^{\text {th }}$ St \& California Ave	$7: 15 \mathrm{AM}$	$1: 00 \mathrm{PM}$	$4: 30 \mathrm{PM}$
California Ave \& Esperanza	$7: 15 \mathrm{AM}$	$1: 00 \mathrm{PM}$	$3: 15 \mathrm{PM}$
California Ave \& 47			
$47^{\text {th }}$ PI \&	Mansueto High School	$7: 15 \mathrm{AM}$	$1: 00 \mathrm{PM}$

The proposed plan for the Esperanza Healthcare Center east parking lot was changed after the traffic impact study draft was completed. The healthcare center originally proposed an auxiliary parking on the east side of California Avenue with a driveway connecting to California Avenue. However, the plan has been altered such that the driveway to the auxiliary parking lot will not connect to California Avenue, but instead only connects to Fairfield Avenue. Intersections connecting the driveway to the study area include $47^{\text {th }}$ Street and Fairfield Avenue and California Avenue at $48^{\text {th }}$ Street. Traffic data was not collected at these two intersections for the report. Near the project area, $47^{\text {th }}$ Street is a short, 280-foot road which runs in the east-west direction and connects to Fairfield Avenue, which runs in the north-south direction and connects to $47^{\text {th }}$ Street. North of $47^{\text {th }}$ Street, Fairfield Avenue is a one-way northbound street serving a residential area. Because $47^{\text {th }}$ Street and Fairfield Avenue are low-volume local roads near the study area, TERRA assumed a small number of vehicles entering and exiting $47^{\text {th }}$ Street and Fairfield Avenue during the study periods.

The existing traffic counts were collected at the site during the ongoing COVID-19 pandemic which has theoretically reduced the amount of travel by the general public at the time of the study. Many businesses, offices, and schools are not operating at full capacity and many people are working from home. Vaccines have been created to reduce the spread and severity of the disease, but the pandemic has not yet been declared an endemic. It is unclear if or when traffic volumes will return to pre-pandemic levels. volumes collected during traffic data collection may not be representative of traffic on a "typical" day around the study area under what was previously considered "normal" as many people may be travelling less during this time. It is necessary to verify that the numbers used for evaluation take into consideration the potential operation if traffic returns to pre-pandemic levels. This required that TERRA consider potential adjustments to the existing traffic based on other available sources of data in the area.

In December 2015, prior to the COVID-19 pandemic, TERRA counted $47^{\text {th }}$ Street at California Avenue as part of a traffic impact study for the Mansueto High School. TERRA counted the intersection on December 16, 2015, from 6:00 AM to 6:00 PM, for a total of a 12-hour count at the intersection.

Table 2 compares TERRA's December 2015 count from 6:00 AM to 6:00 PM, to TERRA's December 2021 count from 7:00 AM to 7:00 PM.

Table 2-Comparison of 2015 and 2021 Traffic Data		
Road Segment		Dec 2015

The volumes on the east leg of the intersection closely match, while there is greater discrepancy on the other legs. However, during the 2015 count, Kedzie Avenue was closed south of $48^{\text {th }}$ Place, causing vehicles that would normally travel to the intersection to detour by traveling eastbound on $47^{\text {th }}$ Street and then southbound on California Avenue. Intuitively, drivers that normally turn on Kedzie Avenue from Archer Avenue to go past $48^{\text {th }}$ Place, would instead turn on California Avenue. The detour would likely not cause vehicles to travel to the east leg of $47^{\text {th }}$ Street at California Avenue. The discrepancy with three (3) of the road segments but not one (1) of them is better explained by the detour than a pandemic where a vaccine has been available for approximately a year. Because the volumes on the east leg of $47^{\text {th }}$ Street at California Avenue closely match, TERRA did not adjust its traffic data to account for reduced travel.

Level of Service and Delay

Delay is one of the main components of measuring the service of an interrupted flow roadway. The principal measure of this delay is control delay which is defined by the Highway Capacity Manual (HCM) as "a quantitative stratification of a performance measure or measures representing quality of service."

The Level of Service (LOS) designation was created as a tool to help laypersons and decision makers determine the difference in operating conditions for a particular location. There are six representative levels of service defined for each type of facility which can be analyzed, and they are designated using letters A through F. These letters are an attempt to translate "complex numerical performance results into a simple A-F system representative of travelers' perceptions of the quality of service." LOS calculations are provided for different modes of travel such as motorized vehicle, pedestrian, bicycle and transit modes. Safety of the intersection is not included in the analysis of LOS. Level of Service is defined separately for signalized intersections and unsignalized intersections as shown in Table 3.

LOS is a measure of the acceptability of the amount of delay and is therefore considered slightly subjective as what is acceptable in a major metropolitan area may not be acceptable in a smaller city or rural area. A residential neighborhood similar to this would also not find long delays acceptable on a daily basis without extenuating circumstances. These delays are computed as the average control delay per vehicle arriving at the intersection. For signalized intersections, delays are evaluated for the overall intersection; at intersections without traffic signals, delay is analyzed for each movement separately and only includes side street traffic and left turns from the major street.

Another factor evaluated when determining traffic operations at an intersection is the volume to capacity (v / c) ratio of the critical lane group. This ratio compares the rate of flow to the available capacity of the intersection and is considered a measure of the degree of saturation. Sustainable values of a v/c ratio range from 0.01 to 1.0 . Values in excess of 1.0 indicate a possible excess of capacity and are considered to be LOS F.

In a dense urban area, it is generally acceptable to provide LOS D in all areas but consider LOS E in certain situations where traffic demand is very high on major arterial routes.
Occasionally, side streets will be allowed to operate at LOS F when volume and demand on the side street is considered very low and servicing these vehicles would cause a greater negative impact on the progression of through traffic on the main route.

Table 3 - Vehicular Level of Service for Control Delay
Level
of
Service
Control Delay per
Vehicle
(seconds / vehicle)
Interpretation
Signalized Unsignalized

A	$0-10$	$0-10$	Minimal control delay; traffic operates at primarily free-flow conditions; unimpeded movement within traffic stream.
B	$10-20$	$10-15$	Minor control delay at signalized intersections; traffic operates at an unimpeded level with slightly restricted movement within the traffic stream.
C	$20-35$	$15-25$	Moderate control delay; movement within traffic stream more restricted than at LOS B; formation of queues contributes to lower average travel speeds.
D	$35-55$	$25-35$	Considerable control delay that may be substantially increased by small increases in flow; average travel speeds continue to decrease.
E	$55-80$	$35-50$	High control delay; average travel speed no more than 33 percent of free flow speed.
F	>80	>50	Extremely high control delay; extensive queuing and high volumes create exceedingly restricted traffic flow.

The peak hours of traffic from the collected traffic volumes were modeled in Synchro 11 modeling software for analysis. The analysis was conducted for the currently existing conditions during the peak hours of traffic in the morning, midday, and afternoon. Using the highest overall hourly total volumes at each intersection provides a worst-case calculation. This provides a slightly more conservative analysis of the traffic, but also results in volumes that don't precisely add up between intersections. Since the volumes during AM peak hour of traffic and the volumes during the PM peak hour of traffic were both higher than the midday peak hour of traffic, the midday traffic was not analyzed. Table 4 provides the results of the analysis, summarizing the Level of Service, delay, and the v/c ratio for the existing intersection conditions while the full model analysis is provided in Appendix B.

Table 4 - Existing Traffic Analysis						
	Weekday AM Peak			Weekday PM Peak		
	LOS	Delay	v/c	LOS	Delay	v/c
$47^{\text {th }}$ St \& Francisco Ave						
Northbound	B	10.1	0.01	-	-	-
Eastbound	D	29.8	0.86	E	38.0	0.92
Westbound	C	17.6	0.69	C	22.7	0.78
Southbound	B	10.4	0.14	B	10.3	0.10
$47^{\text {th }}$ St \& McDonald's						
Southbound	-	-	-	C	19.2	0.01
Eastbound Left	A	8.9	0.04	A	8.9	0.02
$47^{\text {th }}$ St \& Mozart St						
Northbound	D	26.2	0.20	D	26.6	0.23
Westbound Left	A	8.6	0.01	A	8.8	0.01
Southbound	C	17.0	0.21	C	24.5	0.23
$47^{\text {th }}$ St \& California Ave						
Signalized Intersection	E	77.9	1.96	E	62.5	1.95
California Ave \& Esperanza						
Northbound Left	A	9.2	0.07	A	9.5	0.04
Eastbound	C	17.5	0.03	C	19.9	0.22
California Ave \& 47 ${ }^{\text {th }} \mathrm{PI}$						
Northbound Left	A	9.4	0.13	A	9.7	0.04
Eastbound Left	F	82.1	0.80	E	40.5	0.54
$47^{\text {th }}$ St \& Fairfield Ave						
Northbound Left	C	18.4	0.04	C	15.7	0.03
Eastbound Left	A	8.4	0.03	A	8.2	0.02
Westbound Left	A	8.9	0.01	A	8.5	0.01
California Ave \& 48 ${ }^{\text {th }}$ St						
Westbound	E	38.0	0.09	D	27.9	0.07
Southbound Left	B	10.9	0.01	A	9.2	0.01

From the Synchro model, most of the intersections perform at an acceptable Level of Service (LOS). The eastbound movement of $47^{\text {th }}$ Street at Francisco Avenue performs at LOS E during the PM peak hour of traffic, and the volume-to-capacity ratio is 0.9 , indicating it is near saturation. The average delay for eastbound vehicles is 38.0 seconds. It should be noted that the Synchro simulation conceptualizes $47^{\text {th }}$ Street as a two-lane road (one lane in each direction), but in reality, the eastbound lane is wide enough that during high vehicle volume periods, drivers behave as if it were two (2) lanes, which would increase lane capacity and reduce queue lengths. Video footage from traffic counters show drivers did utilize eastbound $47^{\text {th }}$ Street near Francisco Avenue as if it contained two lanes.

The eastbound left movement of California Avenue at $47^{\text {th }}$ Place also appears to perform poorly. During the AM peak hour of traffic where the demand is 29 vehicles, it performs at LOS F, and during the PM peak hour of traffic where the demand is 32 vehicles, it performs at LOS E.

The signalized intersection of $47^{\text {th }}$ Street at California Avenue performs at LOS E during both the AM and PM peak hours of traffic. However, looking at individual movements, all the left and through movements perform at LOS C or better. The eastbound right and northbound right during both peak hours traffic performs at LOS F, which brings the average LOS of the intersection to an LOS E. The v / c ratio of the eastbound rights and northbound rights are at least 1.2, indicating there is more demand for the turn than there is capacity. This is likely caused by the short storage space created by the "No Parking" signs near the intersections, and the heavy through volumes that cause right turns to wait longer for gaps in traffic to perform the turn.

In addition, during the AM peak hour of traffic, the $95^{\text {th }}$ percentile queue length is 517 feet, which extends past the $47^{\text {th }}$ Place. The $50^{\text {th }}$ percentile queue length is 279 feet which extends past the Esperanza Healthcare Center driveway. However, like $47^{\text {th }}$ Street at Francisco Avenue, the Synchro model conceptualizes California Avenue as a two-lane road (one lane in each direction). In reality, the northbound lanes are wide enough that during high vehicle volume periods, drivers treat the northbound lane as two (2) lanes. Video footage from traffic counters show drivers did utilize the northbound lanes as if it contained two (2) lanes, which would increase the capacity of the lanes and mitigate the queues.

There were observed instances from the video footage in which the northbound queues extended past the driveway of the Esperanza Healthcare center. However, there is low vehicle demand for the eastbound left turns on the intersection of California Avenue at the Esperanza Healthcare Center, and the movement performed at LOS C during both peak hours of traffic even with California Avenue being input as a two-lane road (one lane in each direction).

The westbound movements from California Avenue at $48^{\text {th }}$ Street perform at LOS E, however it is expected that the volumes discharged from $48^{\text {th }}$ Street are low.

SECTION V

COMPUTATION OF BACKGROUND TRAFFIC

Often when projecting traffic for a new development with a future opening date, it is necessary to project an increase in the existing traffic due to background growth in the area. This growth is typically from other sources including new developments and overall growth of the area. The project site is located within an established neighborhood. It does not appear there is much available space to spur new development. It is likely that some redevelopment could occur in the area as the retail space turns over and is reused, however it should not create a significant growth or change to the traffic volumes.

For this study, the growth rate for background traffic to be evaluated was assumed to be 0%, meaning that future traffic around the site would remain about the same as the existing traffic if the project was not built. The results of this assumption provide identical LOS results for a future no-build condition to those for existing traffic without the school.

SECTION VI SITE LAYOUT

The proposed plan for the Esperanza Health Center (EHC) would be to use the current building in place. As mentioned in the Introduction/Site Background section, the current parking lot contains 67 parking spaces, three (3) of which are reserved handicapped spaces. The existing lot will be modified such that the existing EHC and the new EHC building will contain a combined 136 total parking spaces, six (6) of which are proposed as handicapped spaces. The current driveway connecting to California Avenue will be removed to allow for the building of the new facility and a new connection will be created to the south onto the vacated $47^{\text {th }}$ Place. An overflow parking lot will be constructed on the east side of California Avenue and will contain approximately 104 parking spaces.

Figure 4 shows the proposed site plan for the Esperanza Health Center, and Figure 5 shows the location of the tentative proposed auxiliary parking lot.

Figure 4-Proposed site plan

Figure 5 - Proposed lot east of California Ave

SECTION VII TRIP GENERATION

Abstract

When evaluating proposed traffic at a new development, it is necessary to estimate the number of new vehicle trips which will be created by the new uses at the site. This estimation of trips is normally generated using data obtained from traffic counts at other similar locations or by using the Institute of Transportation Engineers (ITE) Trip Generation Manual. The ITE Manual collects data at existing sites for all types of uses such as schools, hotels, shopping centers, apartment complexes, subdivisions, offices, etc. and compiles it into book form as a reference for designers. The data in the 10th edition is based on more than 5,000 trip generation studies which have been collected over several decades by transportation professionals.

For most land uses, the collected data is broken into many different independent variables which can be used to perform the calculations, including comparing the number of trips to the gross floor area of the building, or in the case of schools comparing the number of trips to students. Calculations can also be completed for an entire weekday, the traditional peak hours of adjacent street traffic (one hour between 7:00 AM and 9:00 AM or one hour between 4:00 PM and 6:00 PM), the peak hour of activity for the use type (known as AM Peak Generators or PM Peak Generators), Saturday traffic, or Sunday traffic.

For the proposed clinic, the trips generated by the Land Use could closely be modeled by Land Use code (630) of the Trip Generation Manual reads as follows:

Land Use (630) Clinic
"A clinic is any facility that provides limited diagnostic and outpatient care but is unable to provide prolonged in-house medical and surgical care. Clinics commonly have lab facilities, supporting pharmacies, and a wide range of services (compared to the medical office, which may only have specialized or individual physicians)."

TERRA could have estimated the number of trips the new building would generate by correlating the Gross Floor Area (GFA) of the existing building with the number of entering and exiting trips from the collected traffic data, and then extrapolating the number of vehicle trips the new building would generate. However, a preliminary viewing of traffic counter video revealed some trips into the site in the existing condition, especially during the AM peak hour of traffic, are caused by vehicles using the Esperanza Healthcare Center (EHC) to elude the traffic signal at $47^{\text {th }}$ Street at California Avenue, or vehicles briefly
parking to drop students off at the Mansueto High School. In addition, during the time of traffic data collection, the undeveloped south lot was used as a drive thru Covid testing site, which was open from 8:00 AM to 4:00 PM. Vehicles would enter the Covid testing site from 47th Place, and exit into the EHC north lot, and would exit again to either the north onto $47^{\text {th }}$ Street or to the east to California Avenue via the site driveways.

To calculate the number of vehicle trips the new EHC building would generate by using the Trip Generation Manual and using the GFA of the new EHC building as the independent variable. Normally, trip generation calculations are performed using both the average rate provided for the vehicle trips per unit, and the fitted curve equation which is developed from the plots of data collected. Using both methods also allows the engineer to compare the trips and choose the number that seems most likely based on the location and other factors should there be a difference in the total trips. Fitted curve equations are not provided for all the potential Land Use codes in the ITE manual, but trip generations were calculated from fitted curve equations if provided. A summary of calculations is provided in Table 5 with the full calculations provided in Appendix C.

It should be noted that the sites surveyed in the Trip Generation Manual were in Alberta (Canada), California, New Hampshire, Texas, and Vermont, where the level of transit use may be lower than Chicago's. Also, the range of GFA of the clinics surveyed ranged from approximately 1,000 square-feet to 32,000 square-feet. The new proposed EHC building is 43,572 square feet. The plots of data for vehicle trips versus GFA shows the relationship between vehicle trips and GFA is logarithmic, so for higher values of GFA, a fitted curve may be more accurate. However, for a conservative estimate, TERRA used the average rate for AM Peak Hour of Generator to estimate the site-generated trips during the AM peak hour of traffic, and the average rate for the PM Peak Hour of Generator to estimate the sitegenerated trips during the PM peak hour of traffic. The selected entering and exiting trips are highlighted in green in Table 5.

Because the surveys in the Trip Generation Manual are mostly in suburbs with little to no transit service, TERRA considered a reduction in vehicle trips to account for other modes of transportation the populace may use to get to the site. There is an existing bus line along $47^{\text {th }}$ Street which provides bus service to multiple stops within proximity to the EHC. The $47^{\text {th }}$ bus also services the CTA Orange Line station on Kedzie Avenue just south of 47 ${ }^{\text {th }}$ Street and both the Red Line Station and Green Line Station on $47^{\text {th }}$ Street. Based on these factors, TERRA assumed a reduction of 20% to the calculated entering and exiting trips. The estimated vehicle trips generated by the new EHC building is tabulated in Table 6.

Table 6 - Estimated Site Trips with 20\% reduction		
	Entering Trips (vehicles)	Exiting Trips (vehicles)
AM Peak	106	77
PM Peak	74	87

SECTION VIII
 TRIP ASSIGNMENTS

The calculated trips for the new development need to then be assigned to the network to evaluate the future traffic created by the new EHC facility. To begin this process, TERRA evaluated the existing traffic patterns to gain an overall perception of how drivers in the current roadway system utilize the network. This process began by looking at the existing traffic, summing all the vehicles entering the network (study area) and calculating the percent of vehicles entering and exiting the network at each external intersection leg at each terminal intersection. These included the west leg of $47^{\text {th }}$ Street at Francisco Avenue, the north and east legs of $47^{\text {th }}$ Street at California Avenue, and the south leg of California Avenue at $47^{\text {th }}$ Place. Local streets such as Francisco Avenue or Mozart Street were not considered, since vehicles in and out of local streets were small compared to arterial streets and trips generated by the site were not likely to enter the network from those legs.

Table 7 shows the percentage of vehicles entering and exiting the study area at each external intersection leg. Where vehicles currently entered and exited the network would provide a possible approximation of how vehicles generated by the site might enter and exit the network.

Table 7 - Percentage of Vehicles Entering/Exiting Network at External Intersections
AM Peak PM Peak

$\mathbf{4 7}^{\text {th }}$ St \& Francisco Ave		Entering		Entering
West Leg	23.3%	17.5%	25.6%	22.0%
$\mathbf{4 7}^{\text {th }}$ St \& California Ave				
North Leg	20.0%	26.7%	25.0%	20.0%
East Leg	16.1%	27.2%	21.7%	22.5%
California Ave \& 477				
Sl $\mathbf{P l}$				
South Leg	40.6%	28.6%	27.8%	35.5%
	Total	100.0%	100.0%	100.0%

The new Esperanza Healthcare (EHC) lot will have 118 available standard parking spaces, not including handicapped spaces, in its main lot. An additional 100 parking spaces will be located in the lot east of California Avenue. During data collection, the greatest number of vehicles entering the EHC lot during the AM hours occurred at 7:30 AM where 110 vehicles entered the lot. The greatest number of vehicles entering the EHC lot during the PM hours occurred at 3:45 PM, in which 83 vehicles entered the lot.

Though some vehicles entering the EHC lot were using the lot as a cut-through path to avoid the $47^{\text {th }}$ Place at California Avenue intersection or were loading or unloading students for the nearby Mansueto High School or were rideshare vehicles dropping passengers off at the EHC. If we assume the peak value of vehicles entering the EHC lot during the peak hour desire to park within the parking lot, this total will result in a conservative estimate for the number of filled parking spaces. The expansion of the parking lot provides more available parking spaces in the lot, this allows more of the parking demand from the existing condition to be met. This leaves only 20 available spaces in the EHC lot during the AM peak hour of traffic, and 47 available spaces during the PM peak hour of traffic for the trips generated by the expanded building.

It is also assumed that the new auxiliary lot will be utilized by staff for parking at the site, so trips need to be assigned to travel to this lot. There are existing staff trips already in the network which travel to the main lot and would choose a different route to go to the new lot east of California, however their removed trips would likely be replaced by new patient trips to main EHC lot. If we assume that the number of removed staff trips from the main lot arriving from each main route uses the same percentages for arrival and destination as the newly generated patient and staff trips due to the expansion, then it would make sense that the staff trips removed are replaced by the same number of patient trips. This essentially cancels the staff removals out with the new patient trips, moves the existing staff trips to the new lot and then adds new patient and staff trips over and above the estimated existing staff values to the network.

TERR五

Simplifying this theory we can leave the existing entering and exiting trips in the network as they are, These now would include existing patient trips and new patient trips to the main lot. Any additional patient trips not accommodated to in the main EHC lot would need to travel to the auxiliary/staff lot. Existing staff trips and new staff trips would be assigned to the staff lot. We can then assume that the net change results in a higher percentage of vehicles going to the auxiliary/staff lot with a lower percentage going to the EHC main lot.

The trips calculated from the Trip Generation section were distributed entering and exiting the network according to the percentages in Table 7. Because the AM trips would mostly be staff arrivals, TERRA assumed 30% of the entering trips would enter the main lot, and 70% would enter the auxiliary lot. For AM exiting trips, most departures would be from patients in the main lot, thus TERRA assumed 95% of exiting trips occur at the main lot.

Vehicles that were unable to find a parking space at the main lot would then travel to the auxiliary lot. TERRA reasoned vehicles entering from the south driveway will travel north to search for a parking space, and vehicles entering from the north driveway will traverse southwardly to search for a parking space. Since during the AM peak hour of traffic, an estimated 72% of entering trips are entering from the south driveway, of the vehicles that still need to park, an estimated 72% will exit the north driveway to travel to the auxiliary lot. And since an estimated 28% of trips entering the EHC main lot are entering north driveway, of the vehicles that still need to park, an estimated 28% will exit the south driveway of the main lot to travel to the auxiliary lot. Similar calculations were done for the PM hour.

For PM entering trips, because the clinic is closing just after the PM peak hour, it is assumed less staff would be arriving for a shift. For this reason, TERRA assumed 90% of trips would enter the EHC main lot. For exiting trips, TERRA assumed 50% of exiting trips occurred at the main lot and 50% occurred at the auxiliary lot. In the PM peak there were also 17 vehicles which were assumed to not find a spot in the EHC main lot with 12 leaving to the north and 5 exiting to the south which need to travel to the auxiliary lot.

Finally, since the east driveway in the EHC main lot would be removed, existing trips using this driveway were reassigned from the existing east driveway to either the north or south driveway. Figure 6 shows the trip reassignment map for vehicles needing to choose another route due to the removal of the east driveway.

Figure 7 shows the trip assignment map that is generated by the new EHC building. These maps represent possible vehicle paths due to the new development. Trips for the midday peak hour of traffic were not analyzed since midday traffic volumes would be lower than both the AM and PM peak hours of traffic.

SECTION IX

OPENING DAY ANALYSIS

The newly generated trips, and the trip reassignments from the Trip Assignments section were then added to existing volumes to develop "Opening Day" traffic volumes which are shown in Figure 8. The opening day traffic model represents traffic around the study area with the new Esperanza Healthcare Center (EHC) building in operation.

The opening day traffic volumes were inserted into the Synchro traffic modeling software and compared with the existing traffic model to determine if there were any significant changes to the traffic delay or Level of Service (LOS) levels at the study intersections around the site. The modeled traffic performance of the intersection network for opening day is shown in Figure 8. The full Synchro analysis is included in Appendix D.

Table 8 - Opening Day Traffic Analysis						
	Weekday AM Peak			Weekday PM Peak		
	LOS	Delay	v/c	LOS	Delay	v/c
47 ${ }^{\text {th }}$ St \& Francisco Ave						
Northbound	B	10.2	0.01	-	-	-
Eastbound	E	35.1	0.90	E	44.1	0.95
Westbound	C	18.8	0.71	D	25.2	0.81
Southbound	B	10.6	0.14	B	10.5	0.10
47 ${ }^{\text {th }}$ St $\&$ McDonald's						
Southbound	-	-	-	C	20.0	0.01
Eastbound Left	A	8.9	0.04	A	9.0	0.02
$47^{\text {th }}$ St \& Mozart St						
Northbound	D	28.6	0.42	D	32.2	0.43
Westbound Left	A	8.7	0.03	A	9.0	0.03
Southbound	C	19.3	0.24	D	30.7	0.30
$47^{\text {th }}$ St \& California Ave						
Signalized Intersection	E	76.1	1.97	E	66.4	2.09
California Ave \& $47{ }^{\text {th }} \mathrm{Pl}$						
Northbound Left	A	9.9	0.22	A	9.9	0.11
Eastbound Left	F	234.2	1.28	F	64.1	0.81
$47^{\text {th }} \mathrm{PI} \&$ Esperanza Driveway						
Southbound	B	10.6	0.06	A	9.9	0.10
47 ${ }^{\text {th }}$ St \& Fairfield Ave						
Northbound	C	23.3	0.07	D	27.3	0.20
Eastbound Left	A	8.6	0.09	A	9.1	0.07
Westbound Left	A	9.0	0.02	A	8.7	0.01
California Avenue \& 488 ${ }^{\text {th }}$ Street						
Westbound	E	44.1	0.12	F	50.9	0.26
Southbound Left	B	11.2	0.02	A	9.3	0.01
Fairfield Ave \& Esperanza Auxiliary Lot						
Northbound Left	A	7.4	0.02	A	7.3	0.01
Eastbound	-	-	-	A	8.7	0.05

Comparing the existing scenario to the opening day model, the eastbound movement on at the intersection of $47^{\text {th }}$ Street at Francisco Avenue degrades from a LOS D to a LOS E during the AM peak hour of traffic due to an approximately five (5) second increase in delay, and the westbound movement degrades from a LOS C to a LOS D during the PM peak hour of traffic due to an approximately three (3) second increase in delay.

The additional vehicles in the Esperanza Healthcare Center (EHC) lot also increases delay for the southbound movement for the EHC driveway on 47 ${ }^{\text {th }}$ Street at Mozart Street. During
the PM peak the LOS for the southbound movement degrades from a LOS C to a LOS D due to an approximately six (6) second increase in delay.

The eastbound left movement for the intersection of California Avenue at $47^{\text {th }}$ Place also appears to be affected. For the AM peak hour of traffic, the LOS for the eastbound left movement remains LOS F because there no worse demarcations, but the delay increases by 152 seconds, and the volume-to-capacity ratio exceeds 1.0 , indicating saturation. With long delays it is possible that vehicles for the Mansueto High School would use the new EHC driveway on $47^{\text {th }}$ Street a drop-off point or as cut-through traffic.

During the PM peak hour of traffic, the LOS degrades from LOS E to LOS F due to an approximately 24 second increase in delay. It should be noted that TERRA analyzed the existing performance for the intersection during the peak hour in which the greatest number of vehicles was observed, which also coincides with the Mansueto High School dismissal time. The PM peak hour of the intersection began at 3:15 PM, however the PM peaks for most intersections in the study area began at 4:30 PM. It is likely on opening day that the peak number of vehicles discharged from the EHC would occur during traditional peak hours of traffic between 4:00 PM and 6:00 PM, and the vehicle volumes would not be combined with vehicles discharged from the high school. This implies the intersection would perform better during the PM peak hour of traffic than shown in the model.

It was noted in the site visit during school dismissal that the queue on $47^{\text {th }}$ Place can back up to a point where it would block the south driveway from EHC onto $47^{\text {th }}$ Place. It is worth considering that while this could impact site traffic which might be redirected to the north, it also provides an outlet for waiting vehicles from the high school to potentially cut through the EHC parking lot to avoid the traffic queues along $47^{\text {th }}$ Place. This entrance could be signed to prohibit eastbound left turns into the EHC lot or for no cut-through traffic, but these measures may not be effective in deterring this behavior.

During the PM peak hour of traffic, when EHC staff begin to discharge from the auxiliary lot, the northbound movement on $47^{\text {th }}$ Street and Fairfield Avenue degrade from a LOS C to a LOS D. The Westbound movement degrades from a LOS D to a LOS E.

SECTION X

PARKING AND PEDESTRIAN ANALYSIS

The installation of the parking lot along the east side of California Avenue is to allow for overflow parking for the EHC building site existing on the west side of the roadway. This parking area will create a need to cross California to reach the building. The parking lot will be located midblock between $47^{\text {th }}$ Street and $47^{\text {th }}$ Place along California Avenue. The approximate location along California Avenue is shown in Figure 9.

Figure 9-Location of East Parking Lot in relation to EHC site

Chapter 16 of the Federal Highway Administration Course on Bicycle and Pedestrian Transportation covers Mid-Block Crossings. The information states that "Pedestrians will rarely go out of their way to cross at an intersection unless they are rewarded with a much improved crossing - most will take the most direct route possible to get to their destination, even if this means crossing several lanes of high-speed traffic." This implies that the natural desire line for pedestrians is likely to cause them to want to cross the roadway in the shortest
possible distance which would lead to crossings directly from the lot across California Avenue. There is not an existing pedestrian crosswalk at this location currently, making pedestrian movements at this location potentially hazardous. Suggestions for pedestrian improvements recommend considering medians, bump-outs or other pedestrian enhancement facilities to help improve the crossing.

It should be noted that design guidelines from mid-block crosswalks recommend that any such crossing be located a minimum of 300 feet from a signalized intersection. The intent of this is for safety reasons as it would be more beneficial to have pedestrians crossing at the signalized location.

The distance from the proposed east parking lot to the corner of $47^{\text {th }}$ Street is approximately 175-200 feet. This intersection is signalized which provides a safe way for pedestrians to cross the California Avenue without having to contend with traffic. It was also noted at this location the northbound traffic queues generated by stopped vehicles at the intersection can be in excess of this 175 -foot distance which means that pedestrians would be crossing between vehicles which could make them harder to observe for drivers traveling along California Avenue and would create the opportunity for pedestrians to step out unexpectedly in front of vehicles.

Similarly, the distance from the east parking lot to $47^{\text {th }}$ Place to the south is about 200-225 feet. There is no striped crosswalk across California Avenue at the $47^{\text {th }}$ Place intersection so this location also does not provide a protected crossing for pedestrians. The total distance from $47^{\text {th }}$ Street to $47^{\text {th }}$ Place is approximately 400 feet.

TERRA looked at the existing trips that were observed throughout the day at the existing EHC site. It was assumed that similar characteristics would apply to the new building as were seen within the old building. This included similar ratios of visitors to staff and similar rates of trips to and from the EHC campus based on the overall size of the building.

This began by trying to estimate the total number of vehicles at the site during any 15 -minute period. This evaluation was done be considering the number of vehicles which entered the site driveways for the existing building beginning at 7:00 AM. If we assume there were no cars on site prior to this time (although it is likely there may have been vehicles on site) we can estimate a running total based on the number of cars in versus the number of cars out each 15-minute period. To estimate entering vehicles the total entering the California Avenue and $47^{\text {th }}$ Street entrances were summed. In addition, it was noted that vehicles entered the south portion of the site for the COVID drive-thru testing, the difference in vehicles which entered the segment of $47^{\text {th }}$ Place from California Avenue minus the number of vehicles
observed traveling westbound at the junction of Mansueto High School's exit drive and $47^{\text {th }}$ Place was added to these entering values.

It was also noted during the site visits that there were a significant number of vehicles parked in the south area of the site near the COVID testing site. These were assumed to be staff members from the building or for the COVID testing facilities. It was estimated that 20-30 vehicles may have been parked in this area which expanded the total number of parking spots available within the site. It was also noted that some of these additional vehicles from estimated to be entering from $47^{\text {th }}$ Place could be employees at the buildings on the south side of $47^{\text {th }}$ Place which would mean that they were over counted for in the parking totals as parked because they would arrive but never be seen as leaving. With this in mind the total number of parked vehicles was less of a concern than the total number entering and exiting.

Vehicles were blocked from being able to return to exit onto $47^{\text {th }}$ Place, so all parked cars and drive-thru COVID tests were required to exit through the parking lot via the California or $47^{\text {th }}$ Street driveways. The number of vehicles existing at these two locations was then subtracted from the entering vehicles to get an estimate of vehicles on site.

It should also be noted that any cut-through traffic or vehicles unable to park due to the lot being full would be seen as an entering and exiting vehicle and would therefore not contribute to the total parking count.

Based on these totals the cumulative number of vehicles parked within the existing site boundary increased to around 100-110 vehicles by around 8:45 AM and stayed in this range until about $3: 15$ when the number edged up toward 129 and then reached a peak of 129 at 3:45 PM. It was noted that some of these additional vehicles from the south entrance could be employees at the building directly south of the proposed site expansion. Our site visit in the afternoon at the dismissal time for Mansueto High School noted several parents double parked within the EHC lot waiting to pick up students which likely led to this increase.

Based on the existing traffic data collected at the site, TERRA evaluated the total number of trips throughout the day in and out of the site. Estimates were made based on the arrivals in the morning of how many vehicles might be attributed to staff and the number of visitors. Staff totals were estimated to be in the range of around 45 vehicles per day at the existing site. Of these trips it was assumed that 35 vehicles would be attributed to the main building while 10 would be attributed to the COVID testing site.

The total vehicles arriving and departing the site throughout the entire day were summed for the existing site. These total trips were divided by the square feet of building space to get a daily rate of vehicles per square foot attributable to the existing building. The number of estimated staff members was also divided by the total square feet of building space to get
an estimated rate of staff per square foot of building space.
The rate of visitors and staff per square foot were then multiplied by the proposed square feet of the proposed building to get estimates of staff and visitors per 15-minute period throughout the day. The proposed staff rate was estimated to be 1.35 staff per 1,000 square feet which resulted in an additional 58 staff for a total of 93 staff between both buildings. The proposed visitor totals were estimated to be in the range of 35-45 entering vehicles for most of the 15 -minute periods with values slightly above or below this throughout the day. The exiting values were in similar ranges which again left the parking lots at similar ratios of entering and exiting vehicles during any given 15-minute period.

TERRA then looked at how these trips could be assigned to the site throughout the day. The potential staff parking need of 93 vehicles is a key factor in this conversation. While this is just an estimated value, it is important to note that no matter the number of staff vehicles, with 118 total standard spaces within the west lot near the buildings, any number of staff occupying those spots leaves fewer spots for the visitors and patients to the building. The estimates for cumulative parking needs on the site typically fall within the range of 170-200 spaces at any given time based on the ratio of existing visits to when compared to proposed visits based on the building size. With 118 standard spaces in the west side lot, this could leave 80 or more vehicles who need to park in the lot east of California Avenue.

As an example, if we assume that 70 staff parked on the west side of California Avenue, this would leave only about 48 spaces for visitors on the building side of the site and would result in a significant number of visitors of in the range of 75-80 at any given time who would need to cross California throughout the day resulting in higher pedestrian crossing numbers in the area and more potential for conflicts. Visitors create more turnover throughout the day as they come and go from the site, so this would create a much different pedestrian condition than if the staff was required to park in the east lot.

If the staff is required to park in the east lot, they are likely to arrive at the beginning of their daily shift, potentially leave and return for a midday break and then leave again at the end of their shift. With estimated staff totals of up to 93 vehicles, staff parking to the east could free up most of the entire west lot for the patients and visitor use throughout the day and would result in fewer pedestrian crossings.

It would be preferred that pedestrians cross at the signalized intersection at $47^{\text {th }}$ Street when possible, however it may be worth considering installing a crosswalk at $47^{\text {th }}$ Place if pedestrians prefer to use this southern crossing. A midblock crossing location connecting the east lot to the west side of California Avenue would not be recommended due to the proximity to the signalized intersection at $47^{\text {th }}$ Street.

SECTION XI

SUMMARY AND CONCLUSIONS

This study was undertaken to determine the impact of developing the adjacent south parcel at Esperanza Health Center (EHC) to expand the facility. The proposed building would add a new building with approximately 43,600 square feet to the existing 26,100 square feet of facility currently in place.

TERRA completed the original traffic study for the north portion of the site and for the adjacent Mansueto High School located just west of the site. Existing traffic data was collected around the site on December 14, 2021. This data was used in conjunction with data collected for the previous study to evaluate the changes in traffic patterns in the area.

The existing traffic volumes were inserted into Synchro modeling software to simulate and measure the performance of each intersection. In the existing condition, the Level of Service of all intersections perform at acceptable levels during peak hours of traffic, except for the eastbound left movement at California Avenue at $47^{\text {th }}$ Place. The movement performs at Level of Service (LOS) F during the AM peak hour of traffic and LOS E during the PM peak hour of traffic and is largely driven by vehicles discharged from the Mansueto High School.

New vehicle trips generated by the EHC were estimated using the Institute of Transportation Engineers (ITE) Trip Generation Manual. The report used the estimation for Land Use (530) Clinic. Trip estimates were based on the Gross Floor Area (GFA) of the new building. These trip estimates were also compared to the collected data at the site. The existing data collected was divided by the square foot of building space in the existing building to establish an additional estimate of trips generated per square foot of building space. These two methods were then utilized to provide the peak hour and daily trip estimates and parking needs.

The new trips were distributed throughout the network and added to the existing trips to create an "Opening Day" model. The model was then inserted into Synchro to measure the performance of each intersection and compare to the existing condition.

Comparing the existing and opening day conditions, the LOS of the eastbound movement on $47^{\text {th }}$ Street and Francisco Avenue appears to degrade from LOS D to LOS E during the AM peak hour of traffic, and from LOS C to LOS D during the PM peak hour of traffic. The additional vehicles in the main EHC lot creates additional delay and the LOS for the
northbound movement for $47^{\text {th }}$ Street at the EHC driveway appears to degrade from LOS D to LOS E. The eastbound left movement on California Avenue at $47^{\text {th }}$ Place during the AM peak hour of traffic remains at LOS F, the lowest LOS designation, but the additional vehicles from EHC increases the delay. Vehicles from the Mansueto High School may try to use the EHC driveway on $47^{\text {th }}$ Place as a cut-through route to avoid the queue, and vehicles exiting from EHC may instead use the north driveway. During the PM peak hour of traffic, the LOS appears to degrade from LOS E to LOS F. However, this is because trips generated by the EHC were added to the PM peak at the intersection which coincides with school dismissal at 3:15PM. It is more likely the peak hour in which vehicles are discharged from the EHC main lot would occur during traditional peak hours between 4:00 PM and 6:00 PM, and there would not be a combined flow of vehicles queuing at the intersection, and the intersection would perform better.

The parking needs at the site were also evaluated to determine how the parking lot spaces would be expected to serve the need of the facility. The proposed 124 spaces on the site will be augmented by approximately 100 spaces proposed on the east side of California Avenue across from the site. This provides up to 224 spaces (218 Standard, 6 ADA) on the project site.

Based on the calculations of projected visitor and staff parking needs and the number of times that visitors would be expected to come and go throughout the course of a typical day it was reasoned that having large numbers of patients and visitors parking in the east lot would significantly increase the number of pedestrians crossing California Avenue throughout the day.

The proposed east parking lot is located roughly midway between $47^{\text {th }}$ Street and $47^{\text {th }}$ Place along California Avenue which would require pedestrians to walk about 200 feet to the north or south to cross California Avenue at an intersection. Of the two intersections, $47^{\text {th }}$ Street is signalized with pedestrian crosswalks in place, while $47^{\text {th }}$ Place is not marked for pedestrian crossings of California Avenue and traffic is free-flow and uncontrolled. Another consideration is that many pedestrians may choose the shortest route between the east parking lot and the buildings to cross which could result in a large number of midblock crossings at an uncontrolled location. These uncontrolled crossings would be considered dangerous and should be minimized if possible.

It is recommended that the east parking lot be designated as the primary lot for staff use and that visitor parking in this lot be only as an overflow when the west lot is full. This would help to reduce the number of pedestrian crossings in the vicinity of the site. A new crosswalk may still be necessary at the intersection of $47^{\text {th }}$ Place and California Avenue at the south end of the site. If this crosswalk is installed it is expected that it would be at an uncontrolled crosswalk which may need upgraded treatments to make it safer for pedestrians.

The proposed development of the remainder of the parcel on the west side of California Avenue and the additional parcel to the east into an expanded Esperanza Health Center will increase the traffic in the area by drawing additional vehicle trips to this corner. However, these additional trips do not appear to cause significant impacts to the traffic along $47^{\text {th }}$ Street or California Avenue near the project site.

It is noted that the reconfiguration of the parcel to move access directly to California on the east side of the site to the south via $47^{\text {th }}$ Place, east to California Avenue will reroute the traffic flows entering and exiting the site. $47^{\text {th }}$ Place is lightly used throughout most of the day but can experience significant congestion during peak times influenced by Mansueto High School which may impact site access. It may also provide an attractive cut through for congested traffic to and from the high school during these peak periods. It is expected that there could be additional impacts and delays on $47^{\text {th }}$ Place during these times, however this is a vacated street and therefore the queues created impact private property and not City owned streets.

The expansion of the EHC site to provide additional medical facilities in this area and addresses a community need. It is expected that the expansion of this site with a similar use but with increased parking availability should be beneficial to the overall operation of the future site.

APPENDIX A
 EXISTING TRAFFIC DATA

200 PM	0	0	0	0	0	0	2	2	0	0	0	4	0	0	0	0	1	0	0	0	0	0	0	0	4
215 PM	0	0	0	0	-	0	2	2	0	0	0	4	0	0	0	0	2	0	0	0	1	0	0	1	5
230 PM	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	2	4
245 PM	1	0	0	0	0	1	1	8	0	0	0	8	2	0	0	0	1	2	0	1	0	0	0	1	13
Hourly Total	1	0	0	0	0	1	5	14	0	0	0	19	2	0	0	0	4	2	0	3	1	0	0	4	26
300 PM	0	0	1	0	0	1	0	θ	0	0	0	8	2	0	0	0	0	2	0	5	0	0	1	5	17
315 Pm	0	0	0	0	0	0	0	B	0	1	0	9	0	0	0	0	c	0	0	2	0	0	0	2	11
330 PM	10	0	0	0	16	10	0	14	0	3	9	17	0	0	0	0	1.4	0	0	45	0	0	13	45	72
345 PM	10	0	0	0	1	10	0	2	0	1	0	3	0	0	0	0	4	0	0	8	0	0	4	6	18
Hourty Total	20	0	1	0	17	21	0	33	0	5	9	38	2	0	0	0	19	2	0	58	0	0	18	58	119
400 PM	5	0	0	0	1	5	0	1	0	0	2	1	0	0	0	0	2	0	0	11	0	0	0	11.	17
415 Pm	1	0	0	0	1	1	0	3	1	0	0	4	0	0	0	0	3	0	0	1	0	0	2	1	6
430 PM	10	0	0	0	0	10	0	5	0	0	0	5	0	0	0	0	4	0	0	11	0	0	:	19	28
445 PM	3	0	0	0	0	3	0	4	0	1	1	5	0	0	1	0	0	1	0	B	0	0	c	8	17
Houry Total	18	0	0	0	2	18	0	13	1	1	3	15	0	0	1	0	8	1	0	31	0	0	3	31	66
500 Pm	1.	0	0	0	0	1	0	3	0	1	0	4	0	0	0	0	0	0	0	2	0	0	c	2	7
515 PM	2	0	0	0	0	2	0	3	0	0	0	3	0	0	0	0	0	0	0	4	0	0	0	4	9
530 PM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	4	0	0	c	4	5
545 PM	0	0	0	0	0	0	0	2	0	0	0	2	1	0	0	0	1	1	0	1	0	0	c	1	4
Hourly Total	3	0	0	0	0	3	0	8	0	1	0	10	1	0	0	0	0	1	0	11	0	0	0	11	25
800 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
815 PM	0	0	0	0	3	0	0	4	0	0	c	4	0	0	0	0	c	0	0	0	0	0	0	0	4
630 PM	0	0	0	0	0	0	0	B	0	0	c	B	0	0	0	0	¢	0	0	1	0	0	0	1	9
645 PM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Hourty Total	0	0	0	0	0	0	0	13	0	0	0	13	0	0	0	0	c	0	0	1	0	0	0	1.	14
Grand Total	63	0	5	0	30	68	9	240	2	10	23	261	5	0	1	0	$3:$	-	2	242	1	0	\because	245	580
Approsen \%	828	00	74	00	\cdots	$-$	34	820	08	38	-	-	833	00	167	00	$-$	-	08	988	04	00	-	.	-
Total \%	109	00	09	00	-	117	16	414	03	17	.	450	09	00	02	00		10	03	417	02	00	.	422	-
Liplte	03	0	5	0	.	${ }^{80}$	3	234	2	9	.	248	0	0	1	0	-	1	2	238	1	0	-	239	558
* Lophtr	1000	-	1000	.		1000	333	975	1000	900	.	850	00	.	1000	-	-	167	1000	875	1000	-	.	978	969
Busan	0	0	0	0	\cdot	0	0	0	0	0	-	0	0	0	0	0		0	0	0	0	0		0	0
* Bume	00	-	00	-	-	00	00	00	00	00	-	00	00	-	00	.		00	00	00	00	-	.	00	00
Single-Unit Trucki	0	0	0	0		0	e	5	0	1.	.	13	5	0	0	0		5	0	6	0	0	.	6	24
* Singlo-Unit	00	-	00	-	-	00	687	25	00	100	.	50	1000	.	00	-	-	603	00	25	00	.	-	24	41
Attoulated Tracke	0	0	0	0		0	0	0	0	0	,	0	0	0	0	0	-	0	0	0	0	0	-	0	0
$\begin{aligned} & \text { \$ Arbeulatiod } \\ & \text { Truecso } \end{aligned}$	00	-	00	.	-	00	00	00	00	00	-	00	00	-	00	.	-	00	00	00	00	.	.	00	00
Bicgrose an Rond	0	0	0	0	\cdot	0	0	0	0	0	.	0	0	0	0	0	.	0	0	0	0	0	.	0	0
$\begin{gathered} \text { Wicycles on } \\ \text { Road } \end{gathered}$	00	-	00	-	-	00	00	00	00	00	-	00	00	-	00	-	-	00	00	00	00	-	.	00	00
Bicyatas on Croesmalk	-	-	.	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
$\begin{gathered} \text { * Bucycies on } \\ \text { Cropemalk } \\ \hline \end{gathered}$	-	-	-	-	00	-	-	-	-	-	00	-	-	-	-	-	00	-	-	-	-	-	30	.	-
Pederanama	-	,	.	.	30	-	-	.	-	-	23	.	\cdot	.	-	\cdot	$3 i$	-	\cdots	-	-	-	22	-	$-$
* Padoritam	-	-	.	-	1000	-	.	.	-	.	10:0	:	-	.	-	-	1000	-	-	-	-	-	1000	-	-

Sant Louis, Missoun, United States 63146 Saint Louls, Missoun, United Siates 63146
314-395-9899 song@tertaengineering com

Turning Movement Data Plot

Saint Louis, Missoun, United States 63146 Saint Louls, Missoun, United States
$\mathbf{3 1 4 - 3 9 5 - 9 8 9 9}$
song@

Count Name 47th PI \& MHS Driveway

 Site CodeStart Date 12/14/2021

Stant Tirme																									
	Len	Thru	Rıght	U-Tum	Pedr	App	Lent	Thru	Right	U-Tum	Pods	Appol	Lot	Thru	Right	U-Turn	Pedz	$\hat{T}_{\substack{0, t a l}}$	Len	Thru	Rıght	U-Tum	Peds	$\begin{aligned} & \text { App } \\ & \text { Total } \\ & \hline \end{aligned}$	Int Total
715 AM	3	0	0	0	0	3	0	20	0	0	3	20	0	0	0	0	1	0	0	13	0	0	1	13	36
730 AM	3	0	2	0	3	5	1	41	0	1	3	43	0	0	0	0	0	0	0	30	0	0	c	30	78
745 AM	2	0	0	0	s	2	0	57	1	0	5	58	0	0	0	0	2	0	0	49	0	0	3	48	109
800 AM	3	0	0	0	0	3	1	10	0	0	0	11	0	0	0	0	i	0	1	12	0	0	3	13	27
Total.	11	0	2.	0	-	13	2	120	1	1	8	132	0	0	0	0	:	0	1	104	0	0	i	105	250
Approach \%	846	00	154	00	.	-	15	970	0 O	08	.	\cdots	00	00	00	00		.	10	990	00	00	.	-	-
Total \%	44	00	08	00	.	52	08	512	04	0.4	.	52 B	00	00	00	00	-	00	04	418	00	00	.	420	-
PHF	0817	0000	0250	0000	.	0850	0500	0569	0250	0250	.	0568	0000	0000	0000	0000	-	0000	0250	0531	0000	0000	.	0538	0573
Lighte	11	0	2	0	.	13	2	128	1	1	-	132	0	0	0	0		0	1	103	0	0	-	104	249
* Ligha	1000	-	1000	-	-	1000	1000	1000	1000	1000		1000	.	-	.	-	-	-	1000	990	-	-	:	990	995
Buban	0	0	0	0	.	0	0	0	0	0		0	0	0	0	0	-	0	0	0	0	0		0	0
\% Buses	00	-	00	-	\cdots	00	00	00	00	00		00	.	-	-	-	-	-	00	00	-	-	.	00	00
Single-Unit Trucka	0	0	0	0	.	0	0	0	0	0		0	0	0	0	0	-	0	0	1	0	0		1	1
* Single-Unit Thek:	00	.	00	.	.	00	00	00	00	00	-	00	-	-	.	.	.	-	00	10	.	-	-	10	04
Atcoultrod Trucka	0	0	0	0	-	0	0	0	0	0	.	0	0	0	0	0	.	0	0	0	0	0	.	0	0
$\begin{gathered} \text { \% Articulated } \\ \text { Truckt } \end{gathered}$	00	.	00	.	-	00	00	00	00	00	-	00	-	-	-	-	-	-	00	00	-	.	-	00	00
Bicrelay on Road	0	0	0	0	.	0	0	0	0	0		0	0	0	0	0	-	0	0	0	0	0		0	0
$\underset{\substack{\text { Bicycles on } \\ \text { Rond }}}{ }$	00	.	00	-	.	00	00	00	00	00	-	00	00	00	-	-	-	00	00
Bicycles on Croveralk	-	-	-	-	0	-	-	-	-	-	j	-	-	-	-	.	J	-	-	-	-	-	3	-	-
* Bicycion on Crostavalk	-	-	-	-	00	-	-	-	-	-	Go	-	-	-	-	-	co	-	-	-	-	-	30	-	.
Pedeszerimit	-	-	-	-	a	-	-	-	-	-	3	.	.	\cdot	-	-	2	-	-	-	-	\cdot	:	\cdot	.
* Pocositama	.	-	-	.	1020	-	-	-	-	-	1600	-	-	-	-	-	1003	-	-	.	.	\cdot	1000	\cdot	.

Page No 5

Turning Movement Peak Hour Data Plot (7:15 AM)

Saint Louls, Missoun, United States 63146

> Count Name 47 th PI \& MHS Driveway Site Code Start Date 12/14/2021 Page No 6

314-395-9899 song@terraengineering com

Turning Movement Peak Hour Data (300 PM)

Strant Time	MHS Eatt Dnvoray Southbound						47ヶ PI Werbound						Drveway Northbound						47\% PIEathound						$\underline{\text { Im. Total }}$
	Lat	Thru	R10nt	U-Turn	Pods	$\begin{aligned} & \text { App } \\ & \text { Total } \end{aligned}$	Loft	Thru	Right	U-Tum	Peds	$\begin{gathered} \text { App } \\ \text { Total } \end{gathered}$	Len	Thru	Right	U-Tum	Pods	$\begin{aligned} & \text { App } \\ & \text { Total } \end{aligned}$	Lont	Thru	Rigm	U-Tum	Pedr	App	
300 PM	0	0	1	0	0	1	0	9	0	0	0	9	2	0	0	0	0	2	0	5	0	0	1	5	17
315 PM	0	0	0	0	0	0	0	8	0	1	0	9	0	0	0	0	2	0	0	2	0	0	0	2	11
330 PM	10	0	0	0	15	10	0	14	0	3	9	17	0	0	0	0	14	0	0	45	0	0	13	45	72
345 PM	10	0	0	0	1	10	0	2	0	1	a	3	0	0	0	0	4	0	0	8	0	0	4	8	19
Total	20	0	1	0	$1:$	21	0	33	0	5	9	38	2	0	0	0	13	2	0	50	0	\square	19	58	119
Approsich \%	952	00	48	00	.	-	00	888	00	132	-	.	1000	00	00	00		-	00	1000	00	00	-	-	-
Total\%	168	00	08	00	$-$	176	00	277	00	42	-	319	17	00	00	00	-	17	00	497	00	00	-	487	-
PHF	0500	0000	0250	0000	-	0525	0000	0509	0000	0417	-	0559	0250	0000	0000	0000	.	0250	0000	0372	0000	0000	.	0322	0.413
Lights	20	0	1	0	-	21	0	33	0	5	.	38	0	0	0	0	.	0	0	58	0	0	-	58	117
\times Lightm	1000	-	1000	-	-	1000	-	1000	-	1000	-	1000	00	-	-	-	\cdot	00	\square	1000	\therefore	$-$	-	1000	883
Buame	0	0	0	0	-	\bigcirc	0	0	0	0	-	0	0	0	0	0	.	0	0	0	0	0	-	0	0
* Bumer	00	-	00	-	-	00	-	00	-	00	-	00	00	.	-	.	\cdots	00	.	00	-	-	-	00	00
Singole-Unit Trucke	0	0	0	0	-	0	0	0	0	0	.	0	2	0	0	0	,	2	0	0	0	0	.	0	2
* Sunglo. Unit	00	.	00	-	.	00	.	00	-	00	.	00	1000	-	-	-	.	1000	-	00	-	,	\cdot	00	17
Artaulatad Inucke	0	0	0	0	-	0	0	0	0	0	$-$	0	0	0	0	0	-	0	0	0	0	0	.	0	0
$\begin{aligned} & \text { W Arcoulated } \\ & \text { Truck: } \end{aligned}$	00	-	00	-	-	00	.	00	.	00	-	00	00	00	.	00	-	-	-	00	00
Bigcien on Road	0	0	0	0	.	0	0	0	0	0	.	0	0	0	0	0	.	0	0	0	0	0	.	0	0
$\begin{gathered} \times \text { Bicyclas on } \\ \text { Rond } \end{gathered}$	00	-	00	-	-	00	-	00	-	00	.	00	00	-	.	.	.	00	-	00	-	-	-	00	00
Bicycies on Crobewalk	-	-	-	-	0	-	-	-	-	-	0	.	-	-	-	-	*	-	-	-	-	\cdot	3	-	-
* Brcycies on Cromenalk	-	-	-	-	0.3	-	-	-	-	-	¢0	.	-	-	-	-	$\bigcirc 0$	-	-	-	-	-	¢0	-	-
Pedentina	-	-	-	-	17	-	-	-	\checkmark	-	9	-	-	-	-	-	13	-	\cdot	.	.	.	-	.	\cdot
*Padestrans	-	-	.	.	10:	-	.	-	-	-	10:2	-	-	-	-	-	15 CO	.	.	.	-	.	:000	.	\cdot

Saint Louls, Missoun, United States 63146

 314-395-9899 song íterraengıneering com

Turning Movement Peak Hour Data Plot (3:00 PM)

200 PM	10	102	19	0	10	131	15	81	18	0	1	112	21	8	18	0	1	121	15	104	24	0	3	143	507
215 PM	10	95	11	0	3	116	19	97	18	0	3	132	23	90	22	0	4	135	13	04	16	0	0	123	506
230 PM	14	111	10	0	6	135	19	92	11	0	2	122	21	109	28	0	4	158	9	01	19	0	1	119	534
245 PM	17	136	12	0	11	165	28	99	12	0	13	138	26	94	26	0	12	148	7	84	28	0	5	117	587
Hourly Tomal	51	44	52	0	30	547	81	369	55	0	19	505	91	37	92	0	21	580	4	373	BS	0	10	502	2114
300 PM	24	120	11	0	10	155	21	96	19	0	11	436	25	96	10	0	B	139	6	79	30	0	i	117	547
315 Pm	11	117	9	0	; 4	137	23.	102	11	0	6	138	33	135	26	0	9	194	11	80	28	0	\bigcirc	117	584
330 PM	8	122	4	0	43	134	19	33	4	0	i	56	22	102	23	1	47	148	3	43	33	0	:	79	417
34.5 PM	11	131	12	0	30	154	14	69	B	0	5	99	21	125	33	0	42	179	9	89	58	0	14	150	574
Hourly Total	54	480	36	0	97	580	7	300	42	0	40	418	101.	458	100	1	104	800	31	285	147	0	35	483	2122
400 PM	11	128	5	0	:6	142	29	80	11	0	15	129	25	87	25	0	19	147	17	81	23	0	7	131	549
415 Pm	8	142	10	0	i	160	19	81	18	0	i	118	24	88	21	0	11	133	7	103	34	0	3	144	555
430 PM	18	135	5	0	3	158	28	97	15	0	\pm	138	29	1	28	0	11	138	12	79	49	0	4	140	572
44.5 PM	11	142	9	0	?	182	26	99	13	0	2	138°	20	98	26	0	5	144	18	109	45	0	3	170	${ }^{1} 14$
Hourly Total	48	545	29	0	33	822	100	366	57	0	28	523	9	364	88	0	47	580	52	382	151	0	1	585	2990
500 PM	θ	145	14	0	9	185	23	103	13	0	5	139	24	81	21	0	3	128	17	97	49	0	\cdot	163	593
515 PM	19	105	17	0	2	141	20	94	14	0	\cdot	128	27	93	21	0	5	141	13	83	45	0	3	152	562
530 PM	12	142	9	0	-	163	22	92	11	0	5	125	23	88	18	0	5	127	10	67	38	0	4	115	530
545 PM	17	139	8	0	2	182	21	93	11	0	:	125	28	73	17	0	2	118	6	104	40	0	0	150	555
Hourly Total	54	531	48	0	28	831	88	382	49	0	12	517	102	335	75	0	16	512	48	381	173	0	8	560	2240
600 PM	9	97	12	0	3	118	18	98	13	0	-	125	21	80	15	0	4	116	11	90	25	0	2	128	485
815 PM	11.	69	11	0	4	119	23	94	20	0	:	137	22	85	16	0	0	123	20	85	29	0	z	134	505
630 PM	13	00	10.	0	a	113	13.	74	10	0	5	97	24	57	14	0	5	95	13	75	33	0	$=$	121	426
645 PM	16	107	10	0	1	133	14	65	7	0	?	86	21	58	14	0	3	9	5	75	27	0	c	107	420
Hourty Total	49	383	43	0	16	475	66	329	50	0	9	445	88	281	58	0	12	428	49	325	114	0	4	489	1838
Gined Total	581	4391	559	0	3 C	5531	833	3828	532	0	179	5191	1103	4184.	991	1	322	6279	495	4013	127	0	126	5785	22780
Approach \%	105	784	101	00		.	180	737	102	00.	-	-	176	666	158	00	-	-	B 8	694	221	00	-	-	.
Total $\%$	25	193	25	00	-	243	37	168	23	00	.	228	48	164	43	00	.	276	22	176	56	00	-	254	-
Lighan	513	4295	538	0	.	5346	797	3425	481	0	.	4683	1064	4068	958	1	-	6091	476	3574	1241	0	\square	5293	21413
*Loghtm	883	878	862	.	.	967	867	895	B67	-	-	902	B6 5	872	867	1000	-	970	988	891	972	-	.	915	940
Busas	56	18	5	0	-	78	4	70	57	0	-	131	7	28	5	0	-	38	4	70	10	0	-	84	331
* Buens	05	04	08	-	-	14	0.5	10	107	-	-	25	06	08	05	00	-	08	08	17	08	-		15	15
Single-Unit Trucisa	11.	60	14	0		94	26	172	12	0	\square	210	24	60	22	0	.	126	112	175	18	0	\cdot	205	635
$\begin{aligned} & \text { * Singto-Unit } \\ & \text { Tructan } \\ & \hline \end{aligned}$	19	18	25	-	-	17	31	45	23	-	.	40	22	19	22	00	.	20	\| 24	44	14	.	-	35	28
Artaintad Trucke	1	5	0	0	.	6	6	157	0	0	-	163	0	5	5	0	-	18	$!1$	192	7	0	-	200	387
$\begin{gathered} \text { \% Articuilitod } \\ \text { Trucke } \\ \hline \end{gathered}$	02	01	00	-	-	01	07	41	00	-	-	31	07	01	05	00	-	03	02	48	05	-	-	35	17
Bigres on Road:	1	4	2	0	.	7.	0	2	2	0	-	4	0	5	1	0	-	8	0	2	1	0		3	20
$\begin{gathered} * \text { Brycies on } \\ \text { Rond } \end{gathered}$	02	01	04	-	-	01	00	01	04	.	-	01	00	09	01	00	-	01	00	00	01	-	-	01	01
Bicycles on Crostemelk	-	-	-	-	29	-	-	-	-	-	9	-	-	-	-	.	15	-	-	-	-	-	5	-	-
* Bicyclos on Crosawalk	-	.	\cdot	-	75	-	-	-	-	-	50	-	-	-	-	-	47	-	: -	-	-	-	40	-	.
Pedestrams	-	-	-	-	$3: 2$	-	-	-	-	-	170	$-$	-	-	-	-	36^{7}	\cdot	\cdot	-	.	-	$12 \cdot$.	\cdots
* Podererums	-	.	.	.	92.	.	.	-	.	.	950	-	053	-	i -	-	-	-	$\because 0$	-	-

Site Code
Start Date 12/14/2021
Page No 3

Turning Movement Data Plot 19overamemanarig

Saint Lours, Missoun, United States 63146
314-395-9899 songe

314-395-9899 song@terraengineering com

Turning Movement Peak Hour Data (7.15 AM)

Start Time	Conlitornia Ave Southbound						47th St Whathound						Calitomis Ave Northbound						$\begin{aligned} & \text { 47th } \mathrm{St} \\ & \text { Eatiound } \end{aligned}$						Int Total
	Lot	Thru	Right	U-Turn	Pedz	App	Lot	Thru	Right	U.Tum	Pod		Lout	Thru	Roght	U-Tum	Pads	$\begin{aligned} & \text { App } \\ & \text { Total } \end{aligned}$	Lof	Thru	Right	U-Turn	Pad*	$\mathrm{A}_{\mathrm{Apta}}$	
715 AM	11	82	9	0	19	102	11	67	8	0	:	86	36	136	52	0	$\stackrel{\square}{ }$	224	5	97	28	0	5	130	542
730 AM	25	105	21	0	22	151	25	86	9	0	12	120	38	128	46	0	23	212	8	80	36	0	7	124	607
745 Am	20	109	13	0	$1:$	142	30	51	13	0	7	94	37	139	50	0	2	226	12.	88	39	0	-	139	801
800 AM	20	82	17	0	6	119	30	70	15	0	1	115	44	138	48	0	7	229	12	94	31	0	,	137	600
Tomal	78	378	60	0	57	514	96	274	45	0	34	415	155	539	197	0	7	691	37	359	134	0	: 9	530.	2350
Approsich \%	140	735	117	00	.	.	231	680	108	00	.	-	174	605	221	00	.	.	70	677	253	00	.	-	-
Total \%	32	161	28	00	-	219	41	117	19	00	.	177	88	229	84	00	-	379	16	153	57	00	.	226	-
PHF	0760	0867	0714	0000	-	0851	0800	0797	0750	0000	.	0885	0881	098	0947	0000	-	0973	0771	0925	0859	0000	.	0 953	0968
Lighta	68	371	59	0	-	438	∞	251	37	0	-	378	149	528	197	0	-	856	37	319	131	0	-	497	2229
* Lomb	895	$\infty 1$	983	$-$	-	989	93.0	91.8	822	.	.	911	961	976	070	.	-	972	1000	889	978	.	\cdot	919	949
Bume	6	0	1	0	-	7	2	7	7	0	:	18	4	θ	3	0	.	15	0	11	2	0	.	13	51
* Bumas	79	00	17	.	-	14	21	26	156	-	-	39	28	15	15	.	-	17	00	31	15	.	-	25	22
Single-Unit Truche	2	6	0	0	-	0	4	7	0	0	-	11	1	4	3	0	.	8	0	14	0	0		14	41
$\begin{aligned} & \text { \$ Single-Unit } \\ & \text { Trucks } \end{aligned}$	20	18	00	.	.	16	42	20	00	.	-	27	06	07	15	-	.	09	00	39	00	.	-	28	17
Arboulatod Trecks	0	0	0	0	-	0	0	9	0	0		9	1	0	0	0	-	1	0	15	0	0		15	25
$\begin{gathered} \text { * Artaculatiad } \\ \text { Trucke } \end{gathered}$	00	00	00	-	-	00	00	33	00	-	-	22	08	00	00	\cdot	.	0.	00	42	00	.	-	28	11
Bicgrase on Road	0	1	0	0	-	1	0	0	1	0	.	1	0	1	0	0	.	1	0	0	1	0	-	1	4
$\begin{gathered} \text { Burydra on } \\ \text { Rosd } \end{gathered}$	00	03	00	-	-	02	00	00	22	.	.	02	00	02	00	-	-	01	00	00	07	-	.	02	02
Bicycios on Cromemalk	-	-	-	-	:	-	-	-	-	-	2	-	-	.	-	-	1	-	-	-	-	\cdot	0	-	-
* Bicydres on Crodivalk	-	-	-	-	: 8	-	-	-	-	-	59	-	-	-	-	-	14	-	-	\cdot	-	-	00	-	-
Pediatrinim	-	-	-	-	56	-	-	\cdot	\cdot	-	32	\cdot	.	-	$-$	-	69	-	-	-	\cdot	\cdot	13	-	-
* Pecostrame	-	-	-	-	582	.	.	-	.	-	941	-	-	-	-	-	986	-	-	.	.	$-$	1000	\cdots	-

Start Date $12 / 14 / 2021$
Page No 5

Turning Movement Peak Hour Data Plot (7:15 AM)

Saint Louls，Missoun，United States 63146

```
Count Name 47th St \＆Calfornia Ave Site Code
Start Date 12／14／2021
```

314－395－9899 song＠terraengineering com

Turning Movement Peak Hour Data（4：30 PM）

Start Time	Cantomia Ave Southbound						47れ St Whetbound						Californas Ave Northbound						474 StEantbound						Int Total
	Lent	Thu	Right	U－Tum	Podv		Lat	Thru	Right	U－Tum	Peds	$\begin{aligned} & \text { App } \\ & \text { Total } \end{aligned}$	Left	Tinu	Rıght	U－Tum	Peds	$\hat{T}_{\mathrm{T}}^{\mathrm{p}} \mathrm{p}$	Lott	Thru	Right	U－Tum	Peds	$\mathrm{A}_{\mathrm{Totan}}$	
430 PM	18	135	5	0	a	158	26	97	15	0	4	138	29	81	26	0	$1:$	136	12	79	48	0	4.	140	572.
445 PM	11	142	9	0	7	162	26	99	13	0	2	138	20	日 0	28	0	ε	144	18	109	45	0	3	170	614
500 PM	6	145	14	0	a	165	23.	103	13	0	：	139	24	81	21	0	3	126	17	97	48	0		163	503
515 PM	19	105	17	0	3	141	20	94	14	0	1	128	27	日 9	21	0	6	141	13	83	48	0	3	152	562
Total	54	527	45	0	1	626	95	303	55	0	12	543	100	353	24	0	26	547	58	378	189	0	$\cdot 1$	625	2341
Approsich＊	8 B	842	72	00	．	\cdots	175	724	10%	00	．	－	183	645	172	00	．	－	93	605	302	00	．	－	－
Tomem	23	225	19	00	－	287	41	168	23	00	$-$	232	43	151.	40	00	．	234	25	181	81	00	－	287	－
PHF	0711	0809	0662	0000	－	0948	0913	0954	0917	0000	－	097	0862	0901	0904	0000	．	0950	0853	0897	0504	0000	．	0919	0953
Ligita	48	519	43	0	．	810	95	377	47	0	－	519	98	351	92	0	－	541	58	358	188	0	－	604	2274
＊Leght	889	885	858	－	－	874	1000	958	855	．		956	980	864	878	－	－	880	1000	047	085	－	－	868	079
Bumat	6	1	0	0	．	7	0	4	6	0	．	10	0	1	0	0	．	1	0	4	0	0	．	4	22
＊Bumen	111	02	00	－	－	11	00	10	109	－	．	18	00	03	00	－	－	02	00	11	00	－	－	08	09
Single－Unit Trucks	0	7	2	0	－	0	0	6	2	0	．	8	2	1	1	0	．	4	0	7	1	0	．	3	29
$\begin{gathered} \text { \% Singlo.Unit } \\ \text { Trucks } \end{gathered}$	00	13	44	－	－	14	00	15	36	－	－	15	20	03	11	－	－	07	00	19	05	－	－	13	12
Artaulatid Tracke	0	0	0	0	－	0	0	e	0	0		－	0	0	0	0	．	0	0	θ	0	0	．	9	15
$\begin{aligned} & \text { \% Arteculatiod } \\ & \text { Tnuelas } \end{aligned}$	00	00	00	．	．	00	00	15	00	．	－	11	00	00	00	．	，	00	00	24	00	．	．	14	08
Biçctes on Road	0	0	0	0	\cdot	0	0	0	0	0		0	0	0	1	0	．	1	0	0	0	0	．	0	1
$\begin{gathered} * \text { Bigydres on } \\ \text { Raond } \end{gathered}$	00	00	00	－	．	00	00	00	00	．	－	00	00	00	11	．	．	02	00	00	00	．	．	00	00
Bicycies on Crotewalk	－	．	．	－	2	－	－	－	－	－	2	－	－	－	－	－	1	．	－	－	－	－	0	．	－
＊Brcyadre on Croramalk	－	．	－	－	55	－	－	－	－	－	16 ？	－	－	－	－	－	36	－	－	－	－	－	00	－	－
Pedemima	－	．	．	．	29	．	．	－	．	．	10	．	．	－	－	．	25	．	．	．	．	．	11	．	．
＊＊Pedostrana	．	．	－	．	935	－	－	－	－	－	833	－	－	－	－	－	962	－	－	－	－	－	1000	－	－

Saint Louls. Missoun, United States 63146 Site Code
Sta Code $12 / 4 / 2021$
Page No 7

Turning Movement Peak Hour Data Plot (4:30 PM)

$\begin{aligned} & 200 \mathrm{PM} \\ & 215 \mathrm{PM} \\ & 230 \mathrm{PM} \\ & 245 \mathrm{PM} \\ & \hline \end{aligned}$	0	0	0	0	14	0	0	118	13	0	1	131	0	0	0	0	3	0	4	141	0	0	2	143	276
	0	0	0	0	4	0	0	128	14	0	\square	142	0	0	0	0		0	5	123	0	0	0	128	270
	0	0	0	0	$1:$	0	0	121	14	0	0	135	0	0	0	0	1	0	10	120	0	0	0	130	265
	0	0	0	0	S	0	0	133	17	0	1	150	0	0	1	0	1	1	7	114	0	1	0	122	273
Hourly Total300 PM315 PM330 PM345 PM	0	0	0	0	36	0	0	500	58	0	1	558	0	0	1	0	9	1	28	498	0	1	2	525	1084
	1	0	0	0	15	1	0	116	28	1	0	143	0	0	0	0	3	0	${ }^{6}$	113	0	0	0	.19	293.
	0	0	0	0	15	0	0	131	31	0	0	102	0	0	0	0	9	0	9	119	0	0	0	128	290
	0	0	0	0	3)	0	0	52	17	0	0	69	0	0	0	0	'04	0	2	78	0	0	2	78	147
	0	0	0	0	± 2	0	0	111	26	0	0	137	0	0	0	0	's	0	10	140	0	0	0	150	287
Houlty Total	1	0	0	0	177	1	0	410	100	1	0	511	0	0	0	0	1:4	0	27	448	0	0	2	475	807
$\begin{aligned} & 400 \mathrm{PM} \\ & 415 \mathrm{PM} \\ & 430 \mathrm{PM} \\ & 445 \mathrm{PM} \\ & \hline \end{aligned}$	0	0	0	0	\because	0	0	115	12	0	\checkmark	127	0	0	0	0	$\cdot 5$	0	7	117	0	0	n	124	251
	0	0	0	0	18	0	0	110	20	0	0	130	0	0	0	0	E	0	9	138	0	0	1	145	275
	0	0	0	0	1 d	0	0	126	18	0	0	145	0	0	0	0	9	0	8	132	0	0	0	141	288
	0	0	1	0	12	1	0	139	9	0	\square	140	0	0	0	0	7	0	5	157	0	0	0	162	303
Hounty Total	0	0	1	0	68	1	0	482	60	0	0	542	0	0	0	0	42	0	30	542	0	0	1	572	1115
$\begin{aligned} & 500 \mathrm{PM} \\ & 515 \mathrm{PM} \\ & 530 \mathrm{PM} \\ & 545 \mathrm{PM} \\ & \hline \end{aligned}$	0	0	0	0	3	0	0	142	15	0	0	157	0	0	0	0	2	0	1	152	0	0	2	153	310
	1	0	0	0	1)	1	0	138	11	0	0	149	0	0	0	0	1	0	5	150	0	0	0	155	305
	0	0	0	0	\because	0	0	125	5	0	0	130	0	0	0	0	;	0	3	114	0	0	0	117	247
	0	0	0	0	7	0	0	123	10	0	0	133	0	0	0	0	2	0	5	138	0	0	0	143	276
Hourty Tomal	1	0	0	0	44	1	0	528	41	0	0	569	0	0	0	0	8	0	14	554	0	0	0	588	1138
$\begin{aligned} & 600 \mathrm{PM} \\ & 615 \mathrm{PM} \\ & 630 \mathrm{PM} \\ & 645 \mathrm{PM} \\ & \hline \end{aligned}$	0	0	0	0	5	0	0	130	e	0	9	138	0	0	0	0	1	0	9	121	0	0	0	125	261
	0	0	0	0	5	0	0	115	10	0	0	125	0	0	0	0	0	0	5	131.	0	0	0	136	261
	1	0	0	0	3	1	0	110	7	0	0	117	0	0	0	0	2	0	4	119	0	0	0	123	241
	0	0	0	0	1	0	0	94	5	0	0	89	0	0	0	0	3	0	6	101	0	0	2	107	208
Hourly Total	1	0	0	0	14	1	0	449	28	0	0	477	0	0	0	0	$\bar{\square}$	0	19	472	0	0	2	491	969
Grand Total	11	0	4	0	(6):	15	0	5314	658	1	4	5973	0	0	1	0	339	1	293	5637	0	4	$\cdot 1$	5934	11923
Approach \%	733	00	207	00		-	00	890	110	00	.	.	00	00	1000	00	-	-	48	950	00	01	-	\cdots	-
Toua \%	01	00	00	00	\cdots	01	00	440	55	00	-	501	00	00	00	00	.	00	25	473	00	00		498	.
Lrghte	11	0	4	0	\cdots	15	0	4855	855	1	.	5511	0	0	1	0	.	1	293	5158	0	4	.	5455	10982
\% Lights	1000	-	1000		.	1000	-	914	995	1000		923	.	.	1000	.	.	1000	1000	815	-	1000	-	819	929
Bueas	0	0	0	0	-	0	0	83	0	0	-	83	0	0	0	0	-	0	0	83	0	0		83	168
\% Busor	00	-	00	$-$.	00	-	16	00	00	-	14	-	-	00	-	-	00	00	15	-	00	-	14	14
Single-Unit Trucks	0	0	0	0	.	0	0	204	3	0	.	207	0	0	0	0	.	0	0	185	0	0		185	392
\% Sirgle-Unit Trucka	00	-	00	-	-	00	-	38	05	00	-	35	-	-	00	-	.	00	00	33	.	00		31	33
Attaulated Trucka	0	0	0	0		0	0	168	0	0		168	0	0	0	0	-	0	0	208	0	0	-	208	378
\% Artculawd	00	-	00	-	-	00	-	32	00	00	-	28	-	-	00	.	-	00	00	37	.	00		35	32
Bryceles on Road	0	0	0	0	.	0	0	4	0	0		4	0	0	0	0		0	0	3	0	0		3	7
\% Bicyclas on Rond	00	.	00	-		00	.	01	00	00	-	01	.	-	00	-		00	00	01	-	00	-	01	01
Bicycles on Croswalk	-	-	-	-	27	-	-	-	-	-	0	-	-	-	-	-	19	-	-	-	-	-	1	-	-
* Bucyces on Crospmalk	-	-	-	-	43	-	-	-	-	-	cu	-	-	-	-	-	29	-	-	-	-	-	30	-	-
Pedodernans	-	-	-	-	595	-	-	-	-	\cdot	4	-	-	.	-	-	329	.	\cdot	.	.	-	11	-	-
		.	-	-	\% ${ }^{\text {\% }}$	-	103!	.	-	\checkmark	-	-	97:	-	-	-	-	-	. 090	-	-

Saint Louis, Missoun, United States 63146 Count Name 47th St \& MHS East Dnveway Site Code Start Date 12/14/2021 Page No 3

Turning Movement Data Plot

Saint Louls, Missoun, United States 63146 Count Na
Cout 47 St \& MHS East Driveway Site Code
Start Date 12/14/2021
Page No 4
Saint Louls, Missoun, United States 63146
$314-395-9899$ song@terraengineering com Page No 4

Sant Tirme	McDonalds Southbound						Turning Movement Peak Hour Data (7:15 AM)												47th St Estrtround						Ift Total
	Let	Thru	Right	U-Tum	Pede	$\begin{gathered} \text { App } \\ \text { Total } \\ \hline \end{gathered}$	Latt	Thru	Right	U-Tum	Pads	$\begin{aligned} & \text { Apo } \\ & \text { Total } \\ & \hline \end{aligned}$	Loft	Thru	Right	U-Tum	Pods	$\begin{aligned} & \text { App } \\ & \text { Total } \end{aligned}$	Loft	Thru	Right	U-Tum	Pods		
715 AM	0	0	0	0	2 i	0	0	105	15	0	5	120	0	0	0	0	22	0	11	123	0	0	\%	134	254
730 AM	0	0	0	0	24	0	0	131	33	0	0	184	0	0	0	0	30	0	7	118	0	0	\bigcirc	125	288
745 AM	0	0	0	0	37	0	0	100	21	0	0	121	0	0	0	0	24	0	8	138	0	1	3	148	269
800 AM	0	0	0	0	9	0	0	137	24	0	0	161	0	0	0	0	6	0	8	133	0	0	c	142	303
Total	0	0	0	0	91	0	0	473	93	0	0	568	0	0	0	0	82	0	36	512	0	1	0	548	1115
Approsach ${ }^{\text {a }}$	00	00	00	00	.	.	00	836	164	00	.	.	00	00	00	00	.	-	66	893	00	02	.	-	-
Total \%	00	00	00	00	-	00	00	424	83	00	.	508	0.0	00	00	00	-	00	32	459	00	01	.	492	.
PHF	0000	0000	0000	0000	.	0000	0000	0863	0705	0000	.	0883	0000	0000	0000	0000	-	0000	0818	0928	0000	0250	-	0927	0920
Lgitm	0	0	0	0	.	0	0	442	93	0	.	535	0	0	0	0	.	0	36	471	0	1	-	508	1043
* Leght	-	.	-	.	.	-	-	834	1000	-	.	945	.	-	-	-	-	-	1000.	920	.	1000	-	925	935
Buses	0	0	0	0	-	0	0	12	0	0	.	12	0	0	0	0	-	0	0	13	0	0	.	13	25
* Buess	.	.	.	-	.	-	-	25	00	.	.	21	.	\cdot	-	-	-	-	00	25	-	00	-	24	22
Singlo-Unit Tuxctat	0	0	0	0	-	0	0	B	0	0	-	B	0	0	0	0	.	0	0	14	0	0		14	22
* Singlo-Unit Truck	-	.	.	-	.	.	-	17	00	.	.	14	00	27	.	00	.	26	20
Artoulatad Trucke!	0	0	0	0	-	0	0	10	0	0	\cdot	10	0	0	0	0	-	0	0	14	0	0	.	14.	24
* Artculated Trucks	-	.	.	-	.	-	.	21	00	.	.	18	.	.	-	.	.	-	00	27	-	00	-	26	22
Bicrebe on Road	0	0	0	0	.	0	0	1	0	0	,	1	0	0	0	0	.	0	0	0	0	0	-	0	1
$\begin{gathered} \text { \% Bicyalss on } \\ \text { Road } \end{gathered}$	-	-	-	-	-	-	-	02	00	.	-	02	-	-	-	-	-	-	00	00	.	00	\cdot	00	01
Bicycies on Cronswalk	-	-	-	-	0	-	-	-	-	-	3	-	-	\cdot	-	-	$=$	-	-	-	-	-	9	-	-
\% Bicyctat on Cromanalk	-	-	-	-	02	-	-	-	-	-	.	-	-	-	-	-	24	-	-	-	-	-	-	-	-
Pedamama	$=$	\cdots	-	\cdots	9.	-	--	- .-	-...	-	3	-	-	-	.	-	8 C	-	-	-	-	-	0	-	-
\% Pedoentan!	-	.	.	-	1200	\square	\cdots	$\because \cdot$.	---		-	.	-	-	-	95	-	-	-	-	-		-	-

04 Borman Circle Drive

Saint Louls, Missour, United States 63146 Site Code
Start Date 12/14/2021
Sage No 5

Turning Movement Peak Hour Data Plot (7:15 AM)

Saint Louls, Missour, United States 63146
314-395-9899 song

Count Name 47th St \& MHS East Diveway

 Ste CodeSart Date 12/44/2021
314-395-9899 song(i)terraengineering com
Page No 8

Turning Movement Peak Hour Data (4:30 PM)

Start Time	McDonald's Southbound																		47th St Eastround						Int Total
	Loft	Thru	Right	U-Tum	Peds	$\begin{aligned} & \text { Aop } \\ & \text { Total } \end{aligned}$	Loft	Thru	Right	U.Turn	Pods	$\begin{aligned} & \text { App } \\ & \text { Total } \end{aligned}$	Lot	Thro	Right	U-Tum	Pwds	$\begin{aligned} & \text { App } \\ & \mathrm{f}_{0} \end{aligned}$	Loft	Thru	Right	U-Turn	Pede	$\begin{aligned} & \text { App } \\ & \text { Total } \end{aligned}$	
430 PM	0	0	0	0	: 3	0	0	126	19	0	0	145	0	0	0	0	15	0	9	132	0	0	0	141	286
445 PM	0	0	1	0	12	1	0	131	9	0	0	140	0	0	0	0	2	0	5	157	0	0	0	162	303
500 PM	0	0	0	0	a	0	0	142	15	0	0	157	0	0	0	0	2	0	1	152	0	0	0	153	310
515 PM	1	0	0	0	$: 3$	1	0	138	19	0	\square	148	0	D	0	0	.	0	5	150	0	0	0	155	305
Toual	1	0	1	0	45	2	0	537	54	0	0	591	0	0	0	0	24	0	20	591	0	0	2	611	1204
Apprasach \%	500	00	500	00	.	-	00	808	81	00	.	-	00	00	00	00	.	-	33	987	00	00		.	.
Total \%	01	00	01	00	-	02	00	448	45	00	.	491	00	00	00	00	.	00	17	481	00	00	-	507	-
PHF	0250	0000	0250	0000		0500	0000	0945	0719	0000	.	0901	0000	0000	0000	0000	-	0000	0556	0941	0000	0000	.	0943	0971
Lighte	1	0	1	0	.	2	0	516	54	0	.	570	0	0	0	0	-	0	20	508	0	0	.	588	1150
* Legme	1000	\square	1000	-	-	1000	-	961	1000	-	-	064	-	-	-	-	-	-	1000	901	.	-	-	062	863
Bumes	0	0	0	0	.	0	0	4	0	0	.	4	0	0	0	0	.	0	0	5	0	0		5	9
\% Buen	00	\cdots	00	-	\cdots	00	-	07	00	-	.	07	-	-	-	-	.	-	00	08	.	-	-	08	07
Sinclo-Unt Trucks	0	0	0	0		0	0	10	0	0		10	0	0	0	0		0	0	9	0	0		9	19
* Singla-Unit Trucke	00	.	00	-	-	00	-	18	00	-	-	17	-	-	.	-	.	.	00	15	.	-	-	15	16
Antaulatod Trueks	0	0	0	0	.	0	0	7	0	0		7.	0	0	0	0	-	0	0	9	0	0		9	10
$\begin{aligned} & \text { \% Arteulaned } \\ & \text { Trucks } \\ & \hline \end{aligned}$	00	-	00	-	.	00	-	43	00	-	-	12	-	-	-	.	.	-	00	15	-	-	\cdot	15	13
Breycles on Road	0	0	0	0	.	0	0	0	0	0	\cdot	0	0	0	0	0		0	0	0	0	0	.	0	0
$\begin{gathered} \text { \% Bicydee on } \\ \text { Rond } \end{gathered}$	00	-	00	-	-	00	-	00	00	-	-	00	-	-	-	-	.	.	00	00	.	-	-	00	00
Bicycina on Crosawalk	-	-	-	-	\checkmark	-	-	-	-	-	0	-	-	-	-	-	;	-	-	-	-	-	\bigcirc	-	-
$\begin{aligned} & \text { Wicycien on } \\ & \text { Crosewelk } \end{aligned}$	-	-	-	-	83	-	-	-	-	-	-	-	-	-	-	-	42	-	-	\cdot	-	-	-	-	-
Pedatetime	-	-	.	-	44	-	-	.	\cdot	-	0	.	-	.	.	-	23	.	-	\cdot	\cdot	-	?	-...	\checkmark
* Padestrame	-	-	-	-	gi i	\cdot	-	-	-	-	.	-	\cdot	-	-	\cdot	958	-	.	.	.	-	-	-	\cdots

Sant Louls, Missoun, United States 63146 Saint Louls, Missoun, United States 63146

Turning Movement Peak Hour Data Plot (4:30 PM)

Saint Lours, Missoun, United States 83146

Count Name 47th St \& MHS West Driveway

Ste Code
Start Date 12/14/2021 314-395-9899 song@i terraengineering com

Page No 1

Turning Movement Data

Sart Time	Franasco Avo Southbound						47th St Whethound						MHS Whet Dnvewty Northbound						474 St Eatbound						Int Total
	Left	Thru	Right	U-Tum	Podz	$\mathrm{Appol}_{\mathrm{T}}$	Laft	Thru	Right	U-Tum	Pad*		Loin	Thru	Right	U-Tum	Pedr	$\begin{gathered} \text { App } \\ \substack{\mathrm{op} \\ \hline} \end{gathered}$	Left	Thru	Right	U-Tum	Pad*	$\begin{gathered} \mathrm{Apog} \\ \mathrm{Toman} \\ \hline \end{gathered}$	
700 AM	4	0	5	0	0	9	0	60	3	0	.	71	0	0	0	0	-	0	3	64	1	0	$\stackrel{\square}{0}$	68	148
715 AM	5	0	6	0	1	11	0	63	1	0	.	64	0	0	0	0	2	0	4	90	0	0	0	94	169
730 AM	-	0	0	0	1	14	1	85	3	0	0	88	0	0	0	0	:	0	3	82	1	0	?	88	189
745 AM	3	0	7	0	2	10	2	83	8	0	5	81	0	0	0	0	3	0	7	79	1	0	1	87	188
Hourly Total	18	0	28	0	4	44	3	289	13	0	7	315	0	0	0	0	7	0	17	315	3	0	3	335	604
800 AM	4	0	6	0	6	10	2	85	20	0	$!2$	107	0	0	0	0	1	0.	10	130	2	0	2	142	258
E 15 AM	9	0	8	0	14	15	3	78	23	1	33	105	0	0	0	0	3	0	23	122	5	0	3	150	270
-30am	7	0	B	0	30	13	B	89	24	0	56	121	0	0	0	0	6	0	27	115	7	0	12	150	284
645 AM	18.	0	10	0	55	28	2	88	11	0	$3 \times$	101	1	0	0	0	37	1	20	129	5	1	11	155	285
Hourly Total	38	0	28	0	91	66	15	340	78	1	195	434	1	0	0	0	136	1	so	497	19	1	3	597	1098
OCOAM	8	0	6	0	13.	14	1	123	20	0	26	144	0	0	0	0	3:	0	18	127	1	1	;	147	305
915 AM	5	0	10	0	6	15	0	81	10	0	$?$	81	0	0	0	0	3	0	10	118	1	0	.	129	235
930 AM	9	0	8	0	6	17	0	64	5	0	5	89	0	0	0	0	6	0	8	91	0	0	2	97	183
Q4SAM	13	0	9	0	5	22	1	90	4	0	4	85	0	0	0	0	5	0	6	115	0	0	3	121	238
Hourly Total	35	0	33	0	23	68	2	358	30.	0	37	399	0	0	0	0	45	0	40	451	2	1	i)	494	861
1000 AM	7	0	5	0	:	12	0	81	3	0	2	84	0	0	0	0	2	0	9	109	0	0	\because	118	214
1015 AM	7	0	8	0	7	13	0	73	6	0	1	79	0	0	0	0	4	0	4	81	1	0	.	86	178
1030 AM	11	0	4	0	1	45	0	100	7	0	10	107	0	0	0	0	:	0	8	83	2	0	-	104	226
1045 AM	5	1	4	0	7	10	0	89	8	0	$?$	97	0	0	0	0	3	0	13	92	0	0	\cdot	105	212
Heurly Total	30	1	19	0	:	50	0	343	24	0	13	367	0	0	0	0	12	0	35	375	3	0	3	413	830
1100 AM	8	0	4	0	5	12	2	80	3	0	:	103	0	0	0	0	$\stackrel{3}{5}$	0	6	116	0	0	:	122	237
1115 AM	3	0	8	0	5	9	0	∞	3	0	:	93	0	0	0	0	5	0	3	107	1	0	:	111	213
1130 AM	8	0	8	0	2	12	1	129	e	0	3	128	0	0	1	0	-	1	6	88	0	0	i	104	245
1145 Am	θ	0	4	0	5	13	0	100	5	0	4	105	0	0	0	0	5	0	10	97	0	0	-	107	225
Hourly Total	28	0	20	0	;9	45	3	409	17	0	9	429	0	0	1	0	2	1	25	418	1	0	:	444	920
1200 PM	5	0	8	0	2	11	0	\%3	4	0	3	97	0	0	0	0	:	0	11	106	0	1	:	118	228
1215 PM	7	0	4	0	4	19	0	94	A	0	5	100	0	0	0	0	3	0	9	80	0	0	1	98	210
1230 PM	4.	0	5	0	5	10	0	89	4	0	4	103	0	0	0	0	15	0	8	114	0	0	1	122	235
1245 PM	4	0	3	0	${ }_{5}$	7	0	117	2	0	5	118.	0	0	0	0	5	0	9	120	0	0	;	129	255
Hourly Total	20	0	19	0	18	39	0	403	18	0	15	410	0	0	0	0	26	0	37	430	0	1	\&	468	826
100 PM	7	0	7	0	12	14	0	102	9	0	5	111	0	0	0	0	5	0	θ	97	0	0	4	103	228
115 Pm	5	1	4	0	5	10	0	123	5	0	,	128	0	0	0	0	7	0	5	120	1	0	2	126	264
130 Pm	8	0	7	0	7	15	0	117	11	0	3	128	1	0	0	0	\checkmark	1	8	86	0	0	,	105	249
145 PM	6	0	9	0	6	15	0	109	4	0	3	105	0	0	0	0	,	0	10	131	0	0	3	141	291
Hourly Tomal	26	1	27	0	36	54	0	443	29	0	21	472	1.	0	0	0	22	1	30	44	1	0	i	475	1002

$\begin{aligned} & 200 \mathrm{PM} \\ & 215 \mathrm{PM} \\ & 230 \mathrm{PM} \\ & 245 \mathrm{PM} \\ & \hline \end{aligned}$	10	0	8	0	10	18	0	102	5	0	5	107	0	0	0	0	5	0	7	111	1	0	2	119	244
	8	0	5	0	e	13	1	90	13	0	4	104	0	0	0	0	4	0	4	121	0	0	3	125	242
	4	0	8	0	6	12	0	104	4	0	0	108	0	0	0	0	2	0	14	115	0	0	2	128	248
	8	0	4	0	7	10	1	108	11	0	0	118	0	0	0	0	1	0	2	118	0	0	2	120	248
$\begin{gathered} \text { Hounly Total } \\ \hline 300 \mathrm{PM} \\ 315 \mathrm{PM} \\ 330 \mathrm{PM} \\ 345 \mathrm{PM} \\ \hline \end{gathered}$	28	0	25	0	32	53	2	402	33	0	9	437	0	0	0	0	12	0	27	465	1	0	6	493	883
	3	0	2	0	8	5	0	110	4	0	c	114	0	0	0	0	2	0	11	143	0	0	$\stackrel{\square}{2}$	154	273
	8	0	2	0	5	10	0	115	0	0	2	124	0	0	0	0	3	0	16	118	0	0	3	135	269
	7	0	3	0	5	10	2	108	13	0	3	121	0	0	0	0	2	0	9	123	0	0	ε	132	263
	9	0	5	0	7	14	0	117	15	0	3	132	0	0	0	0	5	0	8	117	0	0	\%	125	271
Houry Tomel.	27	0	12	0	25	39	2	449	40	0	8	491	0	0	0	0	12	0	44	502	0	0	0	548	1076
$\begin{aligned} & 400 \mathrm{PM} \\ & 415 \mathrm{PM} \\ & 430 \mathrm{PM} \\ & 445 \mathrm{PM} \end{aligned}$	7	1	4	0	14	12	0	87	18	1	0	118	0	0	0	0	6	0	12	120	3	0	2	135	283
	3	0	4	0	22	7	0	110	19	0	2	129	0	0	0	0	10	0	17	128	1	0	2	144	280
	15	0	10	0	192	25	0	45	9	0	$2: 6$	54	0	1	0	0	'82	1	7	64	1	0	52	72	152
	14	0	11	0	25	25	1.	06	14	0	40	113	0	0	0	0	60	0	10	123	0	1	15	134	272
Hourly Total	39	1	29	0	256	69	1.	350	∞	1.	264	412	0	1	0	0	258	1	46	433	5	1	71	485	967
$\begin{aligned} & 500 \mathrm{PM} \\ & 515 \mathrm{PM} \\ & 530 \mathrm{PM} \\ & 545 \mathrm{PM} \\ & \hline \end{aligned}$	7	0	4	0	19	11	0	101	14	0	12	115	0	0	0	0	19	0	19	117	3	0	7	139	285
	9	0	5	0	s	14	1	111	4	0	4	115	0	0	0	0	4	0	17	137	0	0	2	154	204
	8	0	7	0	15	16	1	117	9	0	10	127	0	0	0	0	53	0	15	131	0	0	13	148	289
	6	0	5	0	10	11	0	115	10	0	6	125	0	0	0	0	5	0	24	157	0	0	4	181	317
Hourly Total	31	0	21.	0	56	52	2	444.	37	0	82	483	0	0	0	0	79	0	. 75	542	3	0	26	620	1156
$\begin{aligned} & 600 \mathrm{PM} \\ & 695 \mathrm{PM} \\ & 630 \mathrm{PM} \\ & 645 \mathrm{PM} \\ & \hline \end{aligned}$	9	0	3	0	:	12	0	139	10	0	2	148	0	0	0	0	3	0	10	142	0	0	5	152	313
	5	0	5	0	a	10	0	122	11	0	2	433	0	0	0	0	3	0	12	150	0	0	2	182	305
	3	0	4	0	13	7	0	110	14	0	5	124	0	0	0	0	8	0	21	113	0	0	5	134	285
	7	0	3	0	3	10	0	112	11	0	2	123	0	0	0	0	5	0	0	136	0	0	0	144	277
Hourly Total	24	0	15	0	35	39	0	483	48	0	11	529	0	0	0	0	19	0	51	541	0	0	7	592	1180
Grand Total	342	3	274	0	6:0	618	30	4723	432	2	65:	5187	2	1	1	0	653	4	507	5413	38	4	177	5982	11772
Appromet 4	553	05	443	00	.	.	08	911.	83	00	.	.	500	250	250	00	-	.	85	BCO	06	01	.	-	\cdots
Total \times	28	00.	23	00	.	53	03	401	37	00	-	441	00	00	00	00	-	00	43.	400	03.	00	\therefore	50 A	-
Lphte	341	3	272	0	-	616	30	4269	423.	2	-	4724	2	0	1	0	-	3	500	4887	37	4	-	5428	10771
*Lomm	997	1000	893	-	\square	895	1000	804	070	1000	-	811	1000	00	1000	-	-	750	980	903	974	1000	\square	910	915
Bueoz	0	0	0	0	.	0	0	82	2	0	-	84	0	0	0	0	.	0	0	98	1	0	.	97	181
\% Busos	00	00	00	-		00	00	17	05	00	-	16	00	00	00	.	-	00	00	18	26	00	-	18	15
Single-Unit Truckn	1	0	0	0	.	1	0	202	5	0	-	207	0	0	0	0	.	0	A	205	0	0	.	211	419
\% Singlo-Umt Truck:	03	00	00	-	.	02	00	43	12	00	-	40	00	00	00	.	-	00	12	38	00	00	.	35	36
Atcaulatad Truck	0	0	0	0		0	0	167	1	0	-	168	0	0	0	0	-	0	1	222	0	0	\cdots	223	301
$\begin{aligned} & \text { * Astculasid } \\ & \text { Trucks } \end{aligned}$	00	00	00	.	-	00	00	35	02	00	-	32	00	00	00	.	.	00	02	41	00	00	.	37	33
Bicrelies on Road	0	0	2	0		2	0	3	1	0	.	4	0	1	0	0	\cdots	1	0	3	0	0	.	3	10
$\begin{gathered} * \text { Bicyelase on } \\ \text { Roud } \end{gathered}$	00	00	07	.	-	03	00	01	02	00	-	01	00	1000	00	.	.	250	00	01	00	00	.	01	09
Bicyclen on Crosimalk	.	-	-	-	27	-	-	-	-	-	1	-	-	-	-	-	17	-	-	-	-	-	0	-	-
\% Bicycios on Crowewlik	-	.	-	-	44	-	-	-	-	-	02	-	-	-	-	-	- 8	-	-	-	-	-	00	-	\cdot
$\begin{aligned} & \text { Podetorams } \\ & \text { \& Padectrana } \\ & \hline \end{aligned}$	-	.	-	-	583	$-$	-	-	-	-	650	-	-	$-$	-		647	-	-	-	$-$	-	177	-	.
	.	.	-	.	956	.	\cdots	-	-	\cdots	993	\cdots	.	\cdots	\cdots	\cdots	㦹?	.	-	\cdots	-	\cdots	1000	-	.

Saint Lours, Mıssoun, United States 63146

Turning Movement Data Plot

Saint Louls, Missoun, United States 63148 Count Name 47th St \& MHS West Drveway
Ste Code
Start Date 12/14/2021 Page No 4

Turning Movement Peak Hour Data (8.15 AM)

Samit Tirne	Franasco Ave Southbound						47 St Whertiound						MHS Weat Dnveway Northbound						47th St Easthound						Int Tatal
	Left	Thru	Right	U-Tum	Poda	$\begin{aligned} & \text { App } \\ & \text { Total } \\ & \hline \end{aligned}$	Loft	Thru	Righe	U.Tum	Pods	$\hat{A}_{\text {Topal }}$	Lot	Thru	R1gm	U-Tum	Pods	$\begin{aligned} & \text { App } \\ & \text { Total } \end{aligned}$	Lont	Thru	Rrght	U-Turn	Pode	$\begin{aligned} & \text { App } \\ & \text { Total } \\ & \hline \end{aligned}$	
B15 AM	9	0	8	0	14	15	3	78	23	1	33	105	0	0	0	0	30	0	23	122	5	0	9	150	270
B30AM	7	0	6	0	35	13	8	69	24	0	56	121	0	0	0	0	00	0	27	116	7	0	12	150	294
845 AM	18	0	10	0	35	28	2	68	11	0	94	101	1	0	0	0	37	1	20	129	5	1	11	155	285
900 AM	8	0	6	0	12	14	1	123	20	0	25	144	0	0	0	0	3 i	0	18	127	1	1	5	147	305
Total	42	0	28	0	97	70	14	378	78	1	209	471	1	0	0	0	158	1	88	494	18	2	3	602	1144
Approach \%	600	00	400	00	-	-	30	803	188	02	-	-	1000	00	00	00	.	-	14 E	821	30	03	.	.	.
Total \%	37	00	24	00	.	81	12	330	68	01	.	412	01	00	00	00	.	01	77	432	16	02	-	526.	-
PHF	0583	0000	0700	0000	-	0625	0438	0768	0813	0250	-	0818	0250	0000	0000	0000	-	0250	0815	0967	0843	0500	.	0971	0938
Liphte	42	0	28	0	-	70	14	350	7	1	-	442	1	0	0	0	.	1	88	453	18	2	-	581	1074
* Loth	1000	.	1000	-	-	1000	1000	528	987	1000	.	988	1000	-	.	.	-	1000	1000	917	1000	1000	.	692	839
Busaz	0	0	0	0	.	0	0	10	1	0	.	11	0	0	0	0	.	0	0	12	0	0	-	12	23
* Butas	00	-	00	-	$-$	00	00	26	13	00	$-$	23	00	-	-	-	-	00	00	24	00	00	-	20	20
Sincle-Unit Trucia	0	0	0	0	.	0	0	8	0	0	-	8	0	0	0	0		0	0	15	0	0	.	15	23
$\begin{gathered} \text { \% Sungle.Unit } \\ \text { Trucks } \end{gathered}$	00	.	00	-	-	00	00	21	00	00	-	17	00	-	-	.	-	00	00	30	00	00	-	25	20
Notaulated Trucke	0	0	0	0		0	0	10	0	0		10	0	0	0	0	.	0	0	14	0	0	\cdot	14	24
$\begin{gathered} \text { W Artalizadad } \\ \text { Trucks } \end{gathered}$	00	.	00	.	-	00	00	28	00	00	-	21	00	-	.	.	.	00	00	28	00	00	-	23	21
Bigceios on Rond	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	.	0	0	0	0	0		0	0
$\begin{gathered} \text { * Bicyclas on } \\ \text { Rond } \end{gathered}$	00	.	00	.	-	00	00	00	00	00	.	00	00	-	-	.		00	00	00	00	00	-	00	00
Bicyclese on Crotwalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	0	-	-
* Bicyclas on Crospurlik	-	-	.	-	00	-	-	-	-	-	00	-	-	-	-	-	0	-	.	.	-	-	00	-	-
Pedestan!	.	.	.	-	9	.	-	.	.	.	$\%$	\cdot	\cdots	.	\cdots	-	$\cdot 57$	-	\cdot	\therefore -	\cdot	-	3.	.	\cdots
\% Padeatriam	-	-	-	-	109\%	.	-	-	-	-	$\cdot 000$	-	-	-	.	.	094	.	-	-	-	---	180	-	-

1804 Borman Circle Drive Saint Louls, Missoun, United States 63146
314-395-9899 song@terraengineenng com

Turning Movement Peak Hour Data Plot (8:15 AM)

Saint Louls, Missoun, Unted States 63146

Count Name 47th St \& MHS West Dnveway

 Site CodeStart Date 12/14/2021
Saint Louls, Missoun, Unrted States 63146
$314-395-9899$ song@ ${ }^{\text {terraengineering com }}$
Page No 6

Turning Movement Peak Hour Data (5:30 PM)

Start Tirme	Francisco Avo Southbound																		47ヵ St Earibound						1 lut Total
	Lent	Thru	Right	U-Tum	Padz	App	Lent	Thru	R1ata	U-Tum	Podr	$A_{p p}$	Len	Thru	Right	U-Tum	Peds	App Toan	Lent	Thru	Right	U-Tum	Peds	$\mathrm{A}_{\mathrm{p} p \mathrm{ap}}$	
530 Pm	9	0	7	0	18	16	1	117	θ	0	40	127	0	0	0	0	53	0	15	131	0	0	13	146	289
545 PM	B	0	5	0	15	11	0	115	10	0	6	125	0	0	0	0	6	0	24	157	0	0	4	181	317
600 PM	-	0	3	0	11	12	0	139	10	0	2	149	0	0	0	0	3	0	10	142	0	0	0	152	313
615 Pm	5	0	5	0	8	10	0	122	11	0	2	133	0	0	0	0	3	0	12	150	0	0	2	182	305
Total	29	0	20	0	47	48	1	493	40	0	50	534	0	0	0	0	¢:	0	61	580	0	0	19	641	1224
Approach \%	592	00	408	00	-	-	02	923	75	00		.	00	00	00	00	-	$-$	85	905	00	00	-	-	.
Total \%	24	00	16	00	-	40	01	403	33	00	-	436	00	00	00	00	.	00	50	474	00	00	.	524	-
PHF	0808	0000	0714	0000	-	0766	0250	0867	0909	0000	-	0898	0000	0000	0000	0000		0000	0635	0824	0000	0000	-	0885	0985
Lughts	29	0	20	0	$-$	49	1	471	40	0	.	512	0	0	0	0	.	0	81	557	0	0	.	618	1179
\% Light	1000	-	1000	-		1000	1000	965	1000	-	.	858	-	-		-	\cdot	-	1000	960	-	-		964	963
Buen	0	0	0	0	-	0	0	4	0	0	.	4	0	0	0	0		0	0	5	0	0	.	5	9
\% Bumen	00	-	00	-	-	00	00	08	00	.		07	-	-	-	-		-	00	09	-	.	.	08	07
Singlo-Lnit Trucke	0	0.	0	0	.	0	0	11	0	0	,	11	0	0	0	0		0	0	9	0	0	.	8	20
$\begin{gathered} \text { \% Single-Unit } \\ \text { Trucks } \end{gathered}$	00	-	00	-	-	00	00	22	00	.	.	21	.	.	.	-	-	-	00	16	.	.	.	14	10
Artaulatad Trucke	0	0	0	0	.	0	0	7	0	0		7	0	0	0	0	-	0	0	9	0	0		9	18
* Artculation	00	-	00	.	-	00	00	14	00	-	-	13	-	-	-	-	-	-	00	18	.	.	-	14	13
Bigries on Rasd	0	0	0	0	.	0	0	0	0	0		0	0	0	0	0	.	0	0	0	0	0	.	0	0
$\begin{gathered} \mathbf{~ B i c y c l e s ~ o n ~} \\ \text { Rond } \\ \hline \end{gathered}$	00	-	00	-	-	00	00	00	00	.	-	00	00	00	-	-	.	00	00
Bicperas on Crostalk	-	-	-	-	4	-	-	-	-	-	0	-	-	-	-	-	;	.	-	-	-	-	3	-	-
$\begin{gathered} \text { * Bicyoles on } \\ \text { Crovisulk } \end{gathered}$	-	-	-	-	95	-	-	.	-	-	60	-	-	.	-	-	; 5	-	-	-	-	-	co	-	-
Pedowname	43	.	-	-	-	-	5	.	.	-	-	-	64	-	-	-	.	.	¢ 9	-	.
* Podestrane	.	.	-	-	515	-	.	.	-	\therefore	18.38	.	.	\cdots	.	-	\%	-	-	$-$	-	-	1000	-	-

Turning Movement Peak Hour Data Plot (5:30 PM)

200 PM	3	0	4	0	12	7	0	123	0	0	0	123	2	0	5	0	4	7	0	140	0	0	0	140	27
215 PM	1	0	7	0	3	8	2	131	0	0	0	133	5	0	8	0	3	11	0	117	8	0	0	123	275
230 Pm	2	0	7	0	:2	9	2	123	0	0	2	125	5	0	7	0	1	12		113	7	0	0	120	208
245 Pm	7	1	4	0	E	12		140	0	0	3	141	5	0		0	:	8	0	110	1	1	.	112	271
Houry Toal	13	1	22	0	33	38	5	517	0	0	2	522	17	0	18	0	3	36	0	480	14	1	0	495	1089
300 PM	3	1	11	0	14	15	2	127	0	0	$\stackrel{3}{2}$	129	$?$	0	4	0	4	11	0	115	2	0	2	117	272
315 Рм	3	0	15	0	13	18	0	142	0	0	0	142		0	4		7	5	0	115	4	0	0	119	284
330 PM	10	2	19	0	∞	31	3	43	0	0	;	48	-	0	2	0	123	\square	0	7	3	0	0	78	181
345 Pm	-	1	16	0	33	27	2	114	0	0	0	116	5	0	5	0	13	10	-	129	17	0	0	148	299
Houtry Total	24.	4	83	0	119	91	7	426	0	0	1	433	19	0	15	0	136	34	-	432	26	0	0	458	1016
400 PM	7	1	θ	0	14	14	2	118	0	0	0	118	5	0	10	0	20	15	0	110	8	0	0	118	285
415 PM	4	0	0	0	\bigcirc	12	0	120	0	0	0	120	3	0	8	0	8	9	0	134	3	0	0	137	278
130 PM	3	2	11	0	13	18	1	128	0	0	1	129	8	0	10	0	13	18	0	132	1	0	0	133	298
445 Pm	9	0	8	0	: 1	17	4	124	0	0	0	128	-	0	4	0	1	10	0	158	1	0	0	159	314
Houry Total	23	3	33	0	48	50	7	488	0	0	1	495	22	0	30	0	17	52	0	534	13	0	0	547	1153
500 Pm	7	0	0	0		15	0	143	0	0	0	143	4	0	7	0	3	11.	0	150	1	0	0	151	320
515 PM	3	0	5	0	9	-	0	139	0	0	0	139	4	\bigcirc	2	0		8	0	149	0	0	0	149	302
530 PM	4	0	5	0	15	9	0	124	0	0	0	124	1	0	3	0	3	4	\bigcirc	113	0	0	0	113	250
545 PM	5	0	5	0	3	10	0	129	0	0	0	129	0	0	1	0	2	1	0	141	1	0	c	142	282
Houty Tomal	19	0	23	0	41	42	0	535	0	0	0	535	9	0	13	0	3	22	0	553	2	0	0	555	1154
800 PM	4	0	2	0	5	θ	,	132	0	0	0	132	4	0	3	0	3	7	0	119	1	0	0	120	265
815 PM	1	0	3	0	5	4	3	122	0	0	0	125	1	0	0	0	2	1	0	128	0	0	0	128	250
830 PM	2	0	4	0	3	6	0	111	0	0	0	111	0	0	0	0	0	0	0	122	0	0	0	122	239
645 PM	1	0	4	0	2	5	0	BS	0	0	0	95	1	0	0	0	1	1	,	102	0	0	0	102	203
Hourry Total	8	0	13	0	15	21	3	450	0	0	0	463	6	0	3	0	1	9	0	471	1	0	0	472	965
Gand Toal	159	18	315	0	447	489	47	5486	0	0	7	5533	168	0	174	0	323	342	0	5518	141	1	5	5658	12022
Approactix	319	37	64	00	-	-	08	882	00	00	.	-	491	00	508	00	.	-	00	975	25	00	-		-
Total \times	13	01	28	00	.	41	04	458	00	00	.	480	14	00	14	00	.	28	00	459	12	00		471	
Lighm	153	18	312	0	.	483	48	5030	0	0	.	5078	188	0	189	0	-	337	0	5038	141	1	-	5180	11076
*Logns	981	1000	800	.	-	888	978	817	-	-	.	817	1000	-	871	\cdots	.	965	.	913	1000	1000	-	815	921
Bumer	0	0	0	0	-	0	0	82	0	0	-	02	0	0	0	0	-	0	0	4	0	0	-	84	168
* Buen	00	00	00	\because	-	00	00	15	-	-	.	15	00	\cdots	00	.	.	00	-	15	00	00	-	15	14
Singole.Unit Tucke	3	0	3	0	.	8	1	207	0	0	.	208	0	0	4	0	.	4	0	183	0	0	.	183	401
$*$ Singio-Unit	19	00	10	.	-	12	21	38	.	-	.	38	00	.	23	-	.	12	-	33	00	00	-	32	33
Antaulatad Trecio	0	0	0	0	.	0	0	184	0	0	.	184	0	0	1	0	.	1	0	209	0	0	.	209	374
$\begin{aligned} & \text { \% Arbeulatad } \\ & \text { Truck: } \end{aligned}$	00	00	00	-	.	00	00	30	-	.	.	30	00	.	08	-	.	03	.	38	00	00	-	37	31
Bigcilion on Road	0	0	0	0	.	0	0	3	0	0	\%	3	0	0	0.	0	.	0.	0.	2	0	0		2.	5
$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Rond on } \\ \hline \end{array}$	00	00	00	-	-	00	00	01	-	-		01	00	-	00	-		00	-	00	00	00	\cdot	00	00
$\begin{aligned} & \text { Bicelas on } \\ & \text { Crosmilk } \end{aligned}$	-	-	-	-	23	.	:	-	-	.	9	3	.	-	.	.	-	0	-	.
	\cdot	\cdot	\cdot	\cdot	56	-	-	-	-	-	00	-	-	\cdot	-	-	$2 i$	-	-	-	\cdot	\cdot	00	-	
Pedostram	\cdots	.	.	.	422		7		370	,	.	.
* Pedoentana	-	.	.	.	94.4	1000	973	.	.			.	1000	.	

Saint Louls, Missoun, United States 63146

Count Name 47th St \& Mozart S

 Site Code Start Date 12/14/2021 Page No 3

Turning Movement Peak Hour Data (7:15 AM)

Sant Time	Mozart St Southbound						Turning Move 474 5t Wertbound						EHC Narthbound						$\begin{aligned} & \text { 47th St } \\ & \text { Eactbound } \end{aligned}$						Int Total
	Loft	Thru	Right	U-Tum	Peds	$\begin{gathered} \text { App } \\ \text { Total } \\ \hline \end{gathered}$	Lat	Thru	Righ	U-Tum	Pads	$\begin{gathered} \text { Aop } \\ \text { Topal } \end{gathered}$	Left	Thru	Right	U-Tum	Pede	Appolt	Left	Thru	Right	U-Tum	Pads	$\begin{aligned} & \text { Apoul } \\ & \text { Totan } \end{aligned}$	
715 AM	4	0	9	0	17	13	0	110	0	0	0	110	1	0	2	0	18	3	0	122	1	0	3	123	249
730 AM	5	0	15	0	21	20	2	145	0	0	0	147	6	0	5	0	27	11	0	111	5	0	5	116	294
745 AM	3	2	22	0	27	27	1	90	0	0	1	91	12	0	4	0	23	18	0	135	1	0	3	136.	270
B00AM	3	0	B	0	8	11	3	142	0	0	0	145	7	0	2	0	6	9	0	123	10	0	$\stackrel{ }{ }$	133	298
Total	15	2	54	0	is	71	8	487	0	0	1	493	26	0	13	0	74	39	0	491	17	0	8	508	1191
Approsech 4	211	28	781	00	.	-	12	988	00	00	.	.	687	00	333	00	-	-	00	987.	33	00	.	.	.
Total\%	14	02	49	00	.	84	05	438	00	00	.	44	23	00	12	00	-	35	00	42	15	00	,	457	.
PHF	0750	0250	0814	0000	.	0657	0500	0840	0000	0000	-	0.438	0542	0000	0650	0000	.	0809	0000	0508	0425	0000	-	0934	0832
Lighte	15	2	54	0	\therefore	71	6	457	0	0	-	483	28	0	13	0	-	30	0	448	17.	0		466	1039
* Leghts	1000	1000	1000	-	\square	1000	1000	838	-	-	-	039	1000	-	1000	-	.	1000	.	014	1000	-		917	835
Buant	0	0	0	0	.	0	0	12	0	0	.	12	0	0	0	0	.	0	0	13	0	0		13	25
\$ Burse	00	00	00	-	.	00	00	25	.	.	.	24	00	-	00	.	-	00	-	20	00	-		26	23
Single-Unit Trucke	0	0	0	0	.	0	0	7	0	0	\cdot	7	0	0	0	0		0	0	15	0	0	.	15	22
* Single-Unit Trucke	00	00	00	-	.	00	00	14	.	-	.	14	00	.	00	.	-	00	-	31	00	-	.	30	20
Artaulatad Truckn	0	0	0	0	-	0	0	10	0	0		10.	0	0	0	0	-	0	0	14	0	0		14	24
$\begin{gathered} \text { Aroculated } \\ \text { Trucke } \end{gathered}$	00	00	00	.	.	00	00	21	-	-	-	20	00	-	00	.	-	00	.	29	00	-	-	28	22
Bicyelos on Road	0	0	0	0	.	0	0	1	0	0	-	1	0	0	0	0		0	0	0	0	0	-	0	1
$\begin{gathered} \text { * Bicyeles on } \\ \text { Roald } \end{gathered}$	00	00	00	-	.	00	00	02	-	-	-	02	00	.	00	.	-	00	-	00	00	-	-	00	09
Beycipa on Crosamalk	-	-	-	-	0	-	-	-	\cdot	-	1	-	-	\cdot	-	-	c	-	-	\checkmark	.	-	:	-	-
\% Bicydes on Crostwalk	-	-	-	-	00	-	-	-	-	-	-1	-	-	-	-	-	$=0$	-	-	-	-	-		.	-
Pecieamans	.	-	.	-	3	-	\cdot	-	--...	-	1	\sim	-	-	-	-	4	-	.	\cdot	-	$-$	2	-	\cdots
* Pedostrans	-	-	-	-	1000	-	-	--	-	-	$18:$	-	-	-	.	.	1\%:\%	\cdot	-	-	-	-	.	-	.

Start Date ${ }^{\text {Pate No }} 5$
Page

Turnıng Movement Peak Hour Data Plot (7:15 AM)

Saint Louis, Missoun, United States 63146

Count Name 47th St \& Mozart S Site Code
 Start Date 12/14/2021

314-395-9899 songettrraengineering com

Turning Movement Peak Hour Data (4.30 PM)

Start Time	Mozart St Southbound						470 st Woubound						EHC Northbound						474 St Eastbound						1rt. Toual
	Loft	Thru	Right	U-Tum	Pede	$\mathrm{A}_{\mathrm{Tofat}}$	Lon	Thru	R10ht	U-Tum	Peda	App	Lefr	Thru	Right	U-Tum	Pode	App	Loft	Thru	Right	U-Tum	Pade	$\mathrm{T}_{\mathrm{T} 0 \mathrm{tan}}$	
430 Pm	3	2	11	0	13	16	1	128	0	0	1	128	8	0	10	0	: 5	18	0	132	1	0	$\stackrel{3}{3}$	133	298
445 PM	8	0	8	0	ii	17	4	124	0	0	0	120	6	0	4	0	1	10	0	158	1	0	$\stackrel{1}{2}$	159	314
500 PM	7	0	8	0	a	15	0	143	0	0	0	143	4	0	7.	0	3	11	0	150	1	0	2	151	320
515 PM	3	0	5	0	9	8	0	139	0	0	0	139	4	0	2	0	1	8	0	149	0	0	0	149	302
Toul	22	2	32	0	11	56	3	534	0	0	1	539	2	0	29	0	23	45	0	509	3	0	0	582	1232
Approsch *	393	36	571	00	-	-	09	991	00	00	.	-	489	00	511	00	.	.	00	995	05	00	.	-	.
Total *	18	02	28	00	-	45	04	433	00	00	.	43 a	18	00	19	00	.	37	00	478	02	00	-	481	-
PHF	0811	0250	072	0000	-	0824	0313	0934	0000	0000	.	0942	0688	0000	0575	0000	-	0825	0000	0832	0750	0000	$-$	0931	0983
Lighat	22	2	32	0	.	58	5	513	0	0	.	318	22	0	23	0	.	45	0	566	3	0	.	569	1188
* Leght	1000	1000	1000	-	-	1000	1000	961	-	-	-	981	1000	-	1000	-	.	1000	.	961	1000	.	-	961	864
Busen	0	0	0	0	.	0	0	4	0	0	.	4	0	0	0	0	.	0	0	5	0	0	-	5	9
* Bueos:	00	00	00	-	-	00	00	07	.	-		07	00	.	00	-	-	00	-	08	00	-	-	08	07
Singia-Unit Trucka	0	0	0	0	.	0	0	11	0	0	.	11	0	0	0	0		0	0	8	0	0		9	20
$\begin{aligned} & \text { \$ Singlo-Unit } \\ & \text { Truck: } \end{aligned}$	00	00	00	-	.	00	00	21	.	-	-	20	00	-	00	-	-	00	-	15	00	-		15	18
Artaulatad Trucks	0	0	0	0	-	0	0	e	0	0		-	0	0	0	0	,	0	0	8	0	0	-	9	15
$\begin{aligned} & \text { * Atrculntad } \\ & \text { Trucka } \end{aligned}$	00	00	00	-	-	00	00	11	-	-	-	11	00	-	00	.	.	00	.	15	00	.	.	15	12
Biercios on Road	0	0	0	0	\cdot	0	0	0	0	0	.	0	0	0	0	0		0	0	0	0	0		0	0
$\begin{gathered} \text { \% Bicydes on } \\ \text { Rond } \end{gathered}$	00	00	00	-	.	00	00	00	.	-	-	00	00	.	00	.	\cdot	00	-	00	00	.	-	00	00
Bucrelesion Crotemilk	-	-	-	-	3	-	-	-	-	-	0	-	-	-	-	-	2	-	-	-	-	-	j	-	-
4 Brcyctes on Cromemilk	-	-	-	-	73	.	.	-	-	-	50	-	-	-	-	-	37	-	-	-	-	-	.	-	-
Pedertame	$=$	\cdots	\checkmark	\cdots	38	\square		-	\cdot	-	1	-		$=$	-	-	2:	-	-	-	\cdot	.	9	.	.
\% Pedarituem	$-$	$=$	\square	-	927	.	\cdots	$-$	-	.	1005	.	.	-	-	.	913	.	.	.	\cdot	-	.	-	-

Ste Code
Start Date 12/14/2021
Page No 7

Turning Movement Peak Hour Data Plot (4:30 PM)

Saint Louis, Missoun, United States 63146
314-395-9899 song@eterraengineering com

215 PM	128	3	0	$\stackrel{\square}{2}$	131	1	143	0	0.	144	0	0	0	$\stackrel{\sim}{2}$	0	275
230 PM	145	5	0	$\stackrel{ }{ }$	150	3	185	0	c	168	2	2	0	c	4	322
245 PM	188	5	0	E	193	4	142	1	3	147	3	0	0	\%	3	343
Hourly Total	803	15	0	1	818	11	571	1	0	583	6	2	0	2	8	1209
300 PM	188	5	0	0	173	5	138	1	3	145	2	1	0	3	3	321
315 PM	164	1	0	0	185	10	201	1	2	212	1	2	0	;	3	380
330 PM	179	1	0	0	180	17	185	0	3.	182	-	46	0	10	55	417
345 PM	224	2	0	0	228	3	164	0	c	167	11	15	0	3	30	423
Hourly Total	735	-	0	0	744	38	868	2	0	708	23	68	0	23	91	1541
400 PM	189	1	0	0	190	1	135	0	c	138	11	7	0	2	18	344
415 PM	194	2	0	0	190	2	135	0	\%	137	1.	1	0	1.	2	335
430 Pm	231	0	0	0	231	5	135	0	0	140	6	15	0	3	21	392
445 PM	212	1	0	0	213	4	124	0	0	128	13	9	0	1	2	363
Hourly Total	828	4	0	0	830	12	529	0	0	541	31	32	0	7	83	1434
500 PM	223	2	0	0	225	2.	127	0	0	129	5	1	0	1	8	360
515 PM	171.	0	0	0	171	3	127	0	0	130	5	5	0	2	10.	311
530 PM	204	1	0	0	205	0	128	0	0	120	1	3	0	1	4	337
545 PM	203	1	0	0	204	2	118	0	0	120	2	0	0	1	2	326
Hourty Total	809	4	0	0	805	7	500	0	0	507	13	9	0	5	22	1334
600 PM	139	0	0	0	139	0	195	0	0	115	0	0	0	2	0	254
615 PM	143	3	0	0	146	1	128	0	0	130	0	0	0	0	0	278
630 PM	135	3	0	0	138	5	93	0	0	9	0	1	0	0	1	237
645 PM	146	1	0	0	147	1	02	0	0	83	0	0	0	0	0	240
Hourty Total	583	7	0	0	570	7	428	0	0	436	0	1	0	2	1	1007
Grand Total	8189	129	3	1	6621	212	6330	3	0	6545	144	224	0	53	358	13534
Appramat \%	980	18	00.	-	-	32	887	00	.	-	391	809	00		-	-
Total $\%$	479	10	00		489	18	488	00	-	494	11	17	00		27	-
Light	6339	118	3	.	6450	207	6150	3	.	6360	128	221	0	.	349	13167
* Lagtre	977	89	1000	.	975	976	972	1000	.	872	889	887	-	.	948	973
Buree	31	0	0	.	31	0	39	0	-	39	2	0	0	\cdot	2	72
\% Busor	05	00	00	.	05	00	06	00	.	08	14.	00	-	.	05	05
Singolo-Unit Trucks	100	10	0	.	110	4	119	0	-	123	7	3	0	.	10	243
* Singto-Unit Trucks	15	78	00	.	17	10	19	00	\cdots	18	49	13	-	.	27	18
Artculatiod Trucks.	13	3	0	-	10	1	12	0	.	13	e	0	0	.	θ	35
* Arbculatra Trucka	02	23	00	.	02	05	02	00	.	02	42	00	\cdots	.	18	03
Bicyelas on Rond	8	0	0	.	6	0	10	0	-	10	1	0	0	\cdot	1	17
* Bicycies on Road	01	00	00.	-	01	00	02	00	-	02	07	00	-	.	03	01
Bicrelee on Croagnalk	.	-	-	0	-	.	.	.	0	.	-	-	-	3	-	-
* Bicycese on Crozewnit	-	-	-	00	-	-	-	-	5°	-	-
Podectrans	-	-	-	-	5	.	-	-	-	56	-	-
* Padeatriana	-	.	-	1000	\cdot	.	.	-	-	\cdots	\cdot	\cdots	-	049	-	-

Saint Louls, Missoun, United States 63146 Count Name
Site Code Start Date 12/14/2021
344-395-9899 songêterraengineering com

Turning Movement Data Plot

raterra
 ENGINEERING LTD 1804 Terta Engineering

Saint Louis, Missoun, United States 63146
Count Name Californa Ave \& 47th PI Site Code
Start Date 12/14/2021

314-395-9899 song@terraengineering com
Page No 4

Start Time	Turning Movement Peak Hour Data (7:15 AM)															
			Califormi Ave			callomia Avo ($\text { 47 } \mathrm{thl}$			Imt Total
	Thru	Right	U-Tum	Pode	App Total	Left	Thru	U.Tum	Pods	App Total	Lot	Right	U-Tum	Pods	App Total	
715 AM	117	3	0	0	120	17	231	0	0	248	8	10	0	C	15	384
730 AM	155	9	0	0	184	38	224	0	0	262	7	26	0	c	33	459
745 AM	172	7	0	0	179	52	257	0	0	309	10	42	0	\pm	52	540
800 AM	130	6	0	0	138	6	221	0	c	227	6	12	0	0	18	381
Total	574	25	0	0	599	113	933	0	0	1046	29	90	0	i	119	1784
Approsich \%	058	42	00	$-$.	108	692	00	.	.	24.4	756	00	-	-	-
Total \%	325	14	00	-	340	04	529	00	.	503	16	51	00	-	67	-
PHF	0834	0694	0000	-	0837	0543	0908	0000	\cdot	0848	0725	0536	0000	-	0572	0817
Liphas	559	25	0	-	504	113	909	0	-	1022	27	90	0	-	117	1723
* Lipht	974	1000	-	.	975	1000	974	-		977	931	1000	-	-	983	977
Bueses	4	0	0	-	4	0	15	0	.	15	0	0	0	-	0	19
* Bueos	07	00	.	.	07	00	10	-	.	14	00	00	-	-	00	11
Singla-Unit Trucke	9	0	0	.	9	0	8	0	.	8	1	0	0	-	1	18
* Singie-Unit Trucki	16	00	-	-	15	00	08	-	-	08	34	00	.	-	08	10
Arboulated Trucke	0	0	0	.	0	0	0	0	-	0	1	0	0	-	1	1
*Atculated Truck	00	00	.	.	00	00	00	.	-	00	34	00	.	.	08	01
Bicyclee on Rond	2	0	0	-	2	0	1	0	-	1	0	0	0	-	0	3
* Bicyclas on Road	03	00	-	-	03	00	01	-	-	01	00	00	.	.	00	02
Bigycies on Crovemalk	-	-	-	0	-	-	-	-	0	.	-	.	-	2	-	-
\% Bicydes on Crasmalik	-	-	-	-	-	-	-	-	-	60	\cdot	-
Pedestine	-	-	-	0	-	-	-	-	0	-	\cdot	\cdot	-	i	-	-
* Padeatrane	-	-	-	.	\cdot	-	-	-	-	-	-	\therefore	\cdot	1008	-	.

Count Name California Ave 8 47th P Site Code Start Date 12/14/2021 Page No 5

Saint Louls, Missoun, United States 63146

Turnıng Movement Peak Hour Data Plot (7:15 AM)

Saint Louls, Missoun, United States 63146 Count Name Californa Ave \& 47th Pl
Site Code
Start Date $12 / 14 / 2021$
Page No 7 Saint Louls, Missoun, United States 63146
314-395-9899 song@

Turning Movement Peak Hour Data Plot (3:15 PM)

Saint Louls, Missoun, United States 63146
Count Name Califomia Ave \& EHC Site Code
Start Date 12/14/2021
314-395-9899 song@
Page No 1

Turning Movement Data

215 PM	127	3	0	0	130	5	139	0	0	144	2	4	0	-	6	280
230 PM	143	5	0	0	148	1	163	0	c	164	1	7	0	.	8	320
245 PM	186	7	0	1	193	4	145	0	0	149	2	9	0	0	19	353
Hourly Total	598	19	0	1	613	15	567	0	0	582	6	25	0	3	31	1278
300 PM	187	5	0	7	172	9	130	0	0	139	3	5	0	3	B	319
315 Pm	159	5	0	0	164	7	193	1.	0	201	2	9	0	\cdot	11	378
330 Pm	169	4	0	0	173	11	153	0	0	184	2	13	1	17	16.	353
345 PM	200	6	0	0	208	13	170	0	0	183	1	23	0	9	24	413
Houriy Total	605	20	0	2	715	40	648	1	0	687	8	50	1	30	59	1489
400 PM	178	5	0	2	183	3	145	0	0	148	2	12	0	1	14	345
415 PM	192	5	0	0	197	B	129	0	0	135	4	4	0	1	B	340
430 PM	213	0	0	0	213	7	133	0	0	140	3	14	0	4	17	370
445 PM	208	1	0	;	209	2	135	0	0	137	5	5	0	1	10	358
Hourly Total	791	11	0	3	802	18	542	0	0	580	14	35	0	10	48	1411
500 PM	218	1	0	1	219	3	. 130	0	0	133.	2	6	0	2	8	360
515 PM	172	1	0	$=$	173	0	134	0	0	134	1	0	0	1	1	308
530 PM	201	1.	0	\because	202	2	128	0	0	130.	1	4	0	1	5	337
545 Pm	200	2	0	.	202	1	118	0	0	117	3	3	0	1	6	325
Hourty Total	791	5	0	2	798	θ	508	0	0	514	7	13	0	5	20	1330
800 PM	136	0	0	0	136	0	117	0	0	117	1	1	0	;	2	255
815 PM	143	0	0	0	143	2	124	0	0	128	0	4	0	0	4	273
630 Pm	137	0	0	0	137	1	∞	0	0	01	1	0	0	0	1	229
645 PM	146	0	0	0	146	0	85	0	0	85	0	2	0	0	2	243
Hounty Total	562	0	0	0	562	3	428	0	0	429	2	7	0	1	9	1000
Grand Tozal	6380	163	1	10	8544	265	6198	3	1	8488	8	250	1	72	337	13347
Approsich \%	975	25	00	-	-	41	959	00	-	-	255	742	03	-	.	.
Total 4	478	12.	00	-	480	20	464	00	-	484	08	19	00	.	25	-
Leghtis	6210	163	1	-	6374	259	6017	3	-	8279	85	248	0	.	333	12906
*Leqht	973	1000	1000	-	974	877	071	4000	-	871	898	992	00	.	90.8	973
Bumes	31	0	0	-	31	4	40	0	-	44	0	2	0	-	2	77
* Buman	05	00	00	-	05	15	08	00	-	07	00	08	00	-	06	06
Singio-Unit Trucke	114	0	0	-	114	2	118	0	-	120	1	0	1		2	236
\% Single-Unil Trucka	18	00	00	-	17	08	19	00	-	19	12	00	1000	\cdot	06	18
Arcoulatod Truck:	19	0	0	.	19	0	17	0		17	0	0	0	.	0	36
\% Artculeisd Trucks	03.	00	00	-	03	00	03	00	-	03	00	00	00	-	00	03
Bicreles on Rond	6	0	0	-	6	0	6	0	-	8	0	0	0	.	0	12
x Bricyales on Rosa	01.	00	00	-	01	00	01	00	-	01	00	00	00	\cdots	00	01
Bicyetes on Cruswalk	.	-	.	3	.	.	-	.	0	.	-	-	.	3	-	.
\% Bicydos an Crusimalk	-	.	.	00	.	.	-	-	00	-	-	-	-	42	-	-
Pedertiane	-	-	-	10	-	-	-	-	1	.	:	-	-	69	\cdot	\cdots
* Pactentram	-	-	-	1000	-	-	-	-	1000	.	-	.	.	958	.	.

04 Borman Circla Drive

Sannt Louis, Missount, United States 63146

Turning Movement Data Plot

Saint Lours, Missoun, United States 63146 Count Name Califomia Ave \& EHC
Ste Code
Start Date $12 / 14 / 2021$
Page No 4

Turning Movement Peak Hour Data (7:15 AM)

Start Tume	Turning Movement Peak Hour Data (7:15 AM)															
	Californa Ale Southbound					(Caliornia Ave $\begin{gathered}\text { Norrtbound }\end{gathered}$					EHC Engtbound					Int Total
	Tinu	Rupht	Soumbound U-Turn	Peds	App Total	Lat	Thru	Northbound U.Tum	Peda	App Total						
715 AM	120	2	0	0	122	B	228	0	0	234	1	2	0	a	3	359
730 Am	184	2	0	0	166	17	214	0	0	231	0	0	0	2	0	397
745 AM	180	8	0	0	188	31	236	1	0	268	0	4	0	\cdot	4	480
800 AM	135	e	0	0	141	8	219	0	0	227	0	2	0	2	2	370
Total	599	18	0	0	617	62	897	1	0	960	1	8	0	:	9	1586
Approact *	871	28	00	-	.	85	934	0.1	.	.	111	889	00	-	.	-
Total 4	378	11	00	.	389	39	588	01	.	605	01	05	00	-	06	-
PHF	0832	0583	0000	-	0820	0500	0950	0250	-	0898	0250	0500	0000		0563	000
Lighte	583	18	0	-	601	58	873	1.	-	232	1	6	0	-	7	1540
\times Lrohts	973	1000	-	.	974	935	973	1000		971	1000	750	-	\cdot	778	879
Bumos	4	0	0	.	4	4	15	0	-	19	0	2	0		2	25
* Butas	07	00	-	-	08	85	17	00	-	20	00	20	-	\cdot	222	16
Sinplo-Unit Truche	10	0	0	-	10	0	7	0	-	7	0	0	0	$-$	0	17
\$ Single-Unit Trucks	17	00	-	-	18	00	08	00	-	07	00	00	-	.	00	11
Atculasod Trucke	0	0	0	-	0	0	1	0	.	1	0	0	0	-	0	1
\%A Abculated Trucks	00	00	-	-	00	00	01	00	-	01	00	00	-	.	00	01
Bicyclos on Road	2	0	0		2	0	1	0	.	1	0	0	0	-	0	3
* Bicydas on Road	03	00	-	-	03	00	01	00	.	01	00	00	-	-	00	02
Bicycies on Cromenik	-	-	-	0	-	\cdots	\bigcirc	\cdots	0	-	\cdots	-	-	\because	-	\cdots
* Biçcles on Cromamalk	-	-	.	\cdots	.	-	\cdot	\cdots	-	.	-	$-$	-	$\therefore 0$	-	-
Pedestinana	\cdot	.	-	0	.	.	-		0	-	-	.	.	!	.	.
* Padestriam	-	\cdot	-	.	-	\%	-	-

Saint Louls, Missoun, United States 63146
314-395-9899 songety
Count Name Califomia Ave \& EHC Site Code
Site Code
Start Date 12/14/2021
Page No 5

Turnıng Movement Peak Hour Data Plot (7:15 AM) Terra Engineering
04 Borman Circla Dive

Saunt Louls, Missoun, United States 63146
$314-395-9899$ song@

> Count Name California Ave \& EHC Site Code
> Start Date 12/14/2021
> Page No 6

Start Tima	Turning Movement Peak Hour Data (3 15 PM)															
	Colitomie Ave					$\cdots \begin{gathered}\text { Calitorna Ave } \\ \text { Northeound }\end{gathered}$					EHC Eastbound					Int Total
	Thru	Right	U-Tum	Pade	App Total	Lont	Thru	U-Tum	Pods	App Total	Left	Righ	u-Tum	Peds	App Total	
315 Pm	159	5	0	0	164	?	193	1	0	201	2	9	0	:	11.	376
330 PM	169	4	0	0	173	11	153	0	0	184	2	13	1	:	16	353
345 PM	200	5	0	0	206	13	170	0	0	183	1	23	0	3	24	413
400 PM	178	5	0	2	183	3	145	0	0	148	2	12	\bigcirc	4	14	345
Total	706	20	0	2	728	34	681	1	0	696	7	57	1	$3:$	85	1487
Approach \$	972	20	00	.	.	49	950	01	.	-	10 B	877	15		.	-
Total \%	475	13	00	\therefore	488	23	445	01	-	468	05	38	01	.	44	-
PHF	0883	0833	0000		0801	0654	0856	0250	.	0886	0875	0820	0250		067	0800
Lphtm	693	20	0	.	713	34	838	1	.	673	7	57	0		04	1450
\% Lephte	982	1000	-	.	982	1000	965	1000	.	867	1000	1000	00	-	985	975
Buacs	4	0	0	-	4	0	10	0	.	10	0	0	0	-	0	14
\% Bume	08	00	-	.	06	00	15	00	.	14	00	00	00	.	00	09
Single-Unit Trucias	7	0	0	.	7	0	8	0	-	8	0	0	1	.	1	16
\% Sunple-Unit Trucks	10	00	.	.	10	00	12	00	-	11	00	00	1000	\cdot	15	11
Artantated Trucko	2	0	0	-	2	0	2	0	.	2	0	0	0	-	0	4
* Arteulatas Trucke	03	00	-	-	03	00	03	00	-	03	00	00	00	-	00	03
Bucycios on Road	0	0	0	-	0	0	3	0	.	3	0	0	0	.	0	3
* Bicycras on Road	00	00	-	$-$	00	00	05	00	.	04	00	00	00		00	02
Bicgectas on Cronowalx	-	-	-	c	-	d	.	.	$=$.	-	-	-	2	-	-
* Bigydes on Crowamalk	.	.	\cdot	29	-	-	-	-	-	-	.	.	-	60	-	-
Pedestrant	.	.	.	2	.	.	.	-	\bigcirc	-	-	-	-	3	-	\cdot
* Padarsuana	$-$	-	-	- 27	\cdots	-	-	-	.	-	-	-	- ...'	$\because \sim$	\cdots	-

1804 Barman Circla Drve

Saint Louis, Missoun, United States 63146 Saint Louls, Missoun, United States $\mathbf{3 1 4 - 3 9 5 - 9 8 9 9}$ song@

Turning Movement Peak Hour Data Plot (3:15 PM)

APPENDIX B EXISTING SYNCHRO OUTPUT

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	4	「	1	4	7	1	4	P	1	F	
Traffic Volume (vph)	37	359	134	96	274	45	155	539	197	76	378	60
Future Volume (vph)	37	359	134	96	274	45	155	539	197	76	378	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	65		70	65		80	65		110	65		150
Storage Lanes	1		1	1		1	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.96			0.96			0.99			0.99	1.00	
Frt			0.850			0.850			0.850		0.980	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1817	0
Flt Permitted	0.502			0.403			0.350			0.253		
Satd. Flow (perm)	895	1863	1583	718	1863	1583	648	1863	1583	465	1817	0
Right Tum on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			84			84			109		16	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			330			247			662	
Travel Time (s)		7.5			7.5			5.6			15.0	
Connl. Peds. (\#/hr)	57		70	70		57	13		34	34		13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	40	390	146	104	298	49	168	586	214	83	411	65
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	40	390	146	104	298	49	168	586	214	83	476	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		12			12			12			12	
Link Offset(t)		0			0			0			0	
Crosswalk Width(t)		16			16			16			16	
Two way Left Tum Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Tum Type	Perm	NA	NA	Perm	NA	NA	Perm	NA	NA	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Minimum Split (s)	31.0	31.0		31.0	31.0		34.0	34.0		34.0	34.0	
Total Split (s)	31.0	31.0		31.0	31.0		34.0	34.0		34.0	34.0	
Total Split (\%)	47.7\%	47.7\%		47.7\%	47.7\%		52.3\%	52.3\%		52.3\%	52.3\%	
Maximum Green (s)	27.0	27.0		27.0	27.0		30.0	30.0		30.0	30.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	17.0	17.0		17.0	17.0		20.0	20.0		20.0	20.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (\#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (\mathbf{s})	27.0	27.0	0.0	27.0	27.0	0.0	30.0	30.0	0.0	30.0	30.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.42	0.42	0.00	0.42	0.42	0.00	0.46	0.46	0.00	0.46	$0.4 \hat{6}$	
v/c Ratio	0.11	0.50	1.74	0.35	0.39	0.58	0.56	0.68	1.96	0.39	0.56	
Control Delay	12.7	16.9	393.8	17.2	15.1	33.6	21.8	18.8	480.9	18.3	15.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.7	16.9	393.8	17.2	15.1	33.6	21.8	18.8	480.9	18.3	15.5	
LOS	B	B	F	B	B	C	C	B	F	B	B	
Approach Delay		112.1			17.6			121.5			15.9	
Approach LOS		F			B			F			B	
Stops (vph)	25	254	36	66	180	1	118	409	64	52	296	
Fuel Used(gal)	0	4	11	1	3	0	2	5	20	1	5	
CO Emissions (g/hr)	23	249	789	66	178	30	114	375	1399	67	369	
NOx Emissions (g/hr)	4	48	154	13	35	6	22	73	272	13	72	
VOC Emissions (g/hr)	5	58	183	15	41	7	27	87	324	16	85	
Dilemma Vehicles (\#)	0	0	0	0	0	0	0	0	0	0	0	
Queue Length 50th (f)	9	110	~ 53	27	79	0	46	172	-89	20	125	
Queue Length 95th (t)	26	182	\#154	64	135	\#32	109	279	\#208	57	207	
Internal Link Dist (ft)		251			250			167			582	
Turn Bay Length (f)	65		70	65		80	65		110	65		
Base Capacity (vph)	371	773	84	298	773	84	299	859	109	214	847	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.50	1.74	0.35	0.39	0.58	0.56	0.68	1.96	0.39	0.56	

Intersection Summary

Ärea Type: Other
Cycle Length: 65
Actuated Cycle Length: 65
Offset: $0(0 \%)$, Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Pretimed
Maximum v/c Ratio: 1.96
Intersection Signal Delay: 77.9 Intersection LOS: E
Intersection Capacity Utilization 74.7\% ICU Level of Service D
Analysis Period (min) 15
\approx Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95 th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: California Ave \& 47th Street

Intersection	
Intersection Delay, s/veh	23.6
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			*			\$			${ }_{4}$	
Traffic Vol, veh/h	88	494	18	14	378	78	1	0	0	42	0	28
Future Vol, veh/h	88	494	18	14	378	78	1	0	0	42	0	28
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	96	537	20	15	411	85	1	0	0	46	0	30
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	29.8			17.6			10.1			10.4		
HCM LOS	D			C			B			B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	100\%	15\%	3\%	60\%
Vol Thru, \%	0\%	82\%	80\%	0\%
Vol Right, \%	0\%	3\%	17\%	40\%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	1	600	470	70
LTT Vol	1	88	14	42
Through Vol	0	494	378	0
RT Vol	0	18	78	28
Lane Flow Rate	1	652	511	76
Geometry Grp	1	1	1	1
Degree of Util (X)	0.002	0.86	0.681	0.136
Departure Headway (Hd)	7.031	4.747	4.796	6.432
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	512	757	746	561
Service Time	5.038	2.824	2.878	4.432
HCM Lane V/C Ratio	0.002	0.861	0.685	0.135
HCM Control Delay	10.1	29.8	17.6	10.4
HCM Lane LOS	B	D	C	B
HCM 95th-tile Q	0	10.3	5.4	0.5

2: 47th Place \& Mansueto High School Exit

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	919	-	297	-	-
HCM Lane V/C Ratio	0.073	-0.033	-	-	
HCM Control Delay (s)	9.2	0	17.5	-	-
HCM Lane LOS	A	A	C	-	-
HCM 95th \%tile Q(veh)	0.2	-	0.1	-	-

Intersection						
Int Delay, s/veh 0.3						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	F		4	
Traffic Vol, veh/h 36		512	473	93	0	0
Future Vol, veh/h	36	512	473	93	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length				-	0	
Veh in Median Storage, \# -		0	0	-	0	-
Grade, \%		0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	39	557	514	101	0	0

Intersection	6.1					
Int Delay, s/veh						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y				F	
Traffic Vol, veh/h	29	90	113	933	574	25
Future Vol, veh/h	29	90	113	933	574	25
Conficting Peds, \#hr	0	0	0	0	0	0
Sign Control S	Stop	Stop	Free	Free	Free	Free
RT Channelized		one	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#		-	-	0	0	-
Grade, \%	0	-	-	0	0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow-	32	98	123	1014	624	27

Intersection

Intersection Delay, s/veh
Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			\pm			\dagger	
Traffic Vol, veh/h	30	444	1	0	443	78	1	0	0	26	1	27
Future Vol, veh/h	30	444	1	0	443	78	1	0	0	26	1	27
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heaw Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	
Mumt Flow	33	483	1	0	482	85	1	0	0	28	1	29
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conficting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conficting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	17.2				18.7		9.7			9.8		
HCMLOS	C				C		A			A		

Lane	NBLT1	EBLn1	WBLIT	SBLn1
Vol Left, \%	100\%	6\%	0\%	48\%
Vol Thnu, \%	0\%	93\%	85\%	2\%
Vol Right, \%	0\%	0\%	15\%	50\%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	1	475	521	54
LTVol	1	30	0	26
Through Vol	0	444	443	1
RT Vol	0	1	78	27
Lane Flow Rate	1	516	566	59
Geometry Grp	1	1	1	1
Degree of Util (X)	0.002	0.677	0.721	0.1
Departure Headway (Hd)	6.73	4.72	4.583	6.133
Convergence, Y YN	Yes	Yes	Yes	Yes
Cap	535	759	787	588
Service Time	4.734	2.778	2.637	4.133
HCM Lane V/C Ratio	0.002	0.68	0.719	0.1
HCM Control Delay	9.7	17.2	18.7	9.8
HCM Lane LOS	A	C	C	A
HCM 95th-tile Q	0	5.3	6.3	0.3

	\dagger					4	4	4	7	*	\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	4	7	'	4	F	7	4	1	4	1	
Traffic Volume (vph)	27	362	89	68	314	47	82	309	60	44	279	57
Future Volume (vph)	27	362	89	68	314	47	82	309	60	44	279	57
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	65		70	65		80	65		110	65		150
Storage Lanes	1		1	1		1	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99			1.00			0.99			1.00	1.00	
Fr			0.850			0.850			0.850		0.975	
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1809	0
Filt Permitted	0.455			0.400			0.455			0.483		
Satd. Flow (perm)	836	1863	1583	744	1863	1583	843	1863	1583	898	1809	0
Right Tum on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			84			84			84		21	
Link Speed (mph)		30			30			30			30	
Link Distance (tit)		331			333			247			662	
Travel Time (s)		7.5			7.6			5.6			15.0	
Confl. Peds. (\#/hr)	20		3	3		20	9		3	3		3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	29	393	97	74	341	51	89	336	65	48	303	62
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	29	393	97	74	341	51	89	336	65	48	365	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width (t)		12			12			12			12	
Link Offset(t)		0			0			0			0	
Crosswalk Width(t)		16			16			16			16	
Iwo way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Tuming Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	NA	Perm	NA	NA	Perm	NA	NA	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Minimum Split (s)	31.0	31.0		31.0	31.0		34.0	34.0		34.0	34.0	
Total Split (s)	31.0	31.0		31.0	31.0		34.0	34.0		34.0	34.0	
Total Split (\%)	47.7\%	47.7\%		47.7\%	47.7\%		52.3\%	52.3\%		52.3\%	52.3\%	
Maximum Green (s)	27.0	27.0		27.0	27.0		30.0	30.0		30.0	30.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	17.0	17.0		17.0	17.0		20.0	20.0		20.0	20.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (\#/hr)	0	0		0	0		0	0		0	0	
Act Effet Green (s)	27.0	27.0	0.0	27.0	27.0	0.0	30.0	30.0	0.0	30.0	30.0	

Lane Group	EBL	EB.T	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.42	0.42	0.00	0.42	0.42	0.00	0.46	0.46	0.00	0.46	0.46	
v/c Ratio	0.08	0.51	1.15	0.24	0.44	0.61	0.23	0.39	0.77	0.12	0.43	
Control Delay	12.4	17.0	164.3	15.0	15.9	36.2	12.6	13.2	61.8	10.9	13.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.4	17.0	164.3	15.0	15.9	36.2	12.6	13.2	61.8	10.9	13.0	
LOS	B	B	F	B	B	D	B	B	E	B	B	
Approach Delay		44.2			18.0			19.6			12.8	
Approach LOS		D			B			B			B	
S'Sops (vph)	19	258	9	45	215	1	48	192	2	26	202	
Fuel Used (gal)	0	4	3	1	3	0	1	2	1	0	4	
CO Emissions (g/hr)	17	252	228	44	211	33	$4 \overline{4}$	174	62	33	262	
NOx Emissions (g / hr)	3	49	44	9	41	6	9	34	12	6	51	
VOC Emissions (g/hr)	4	58	53	10	49	8	10	40	14	8	61	
Dilemma Vehicles (\#)	0	0	0	0	0	0	0	0	0	0	0	
Queue Length 50th (t)	7	111	-11	18	93	0	20	83	0	10	86	
Queue Length 95th (t)	21	184	\#95	46	156	\#34	47	139	\#54	28	147	
Internal Link Dist (t)		251			253			167			582	
Turn Bay Length (ft)	65		70	65		80	65		110	65		
Base Capacity (vph)	347	773	84	309	773	84	389	859	84	414	846	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.51	1.15	0.24	0.44	0.61	0.23	0.39	0.77	0.12	0.43	

Intersection Summary

Area Type: Other
Cycle Length: 65
Actuated Cycle Length: 65
Offset: $0(0 \%$), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Pretimed
Maximum v/c Ratio: 1.15
Intersection Signal Delay: 24.5
Intersection LOS: C
Intersection Capacity Utilization 69.1%
ICULevel of Service C
Analysis Period (min) 15
Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: California Ave \& 47th Street

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT WBR SBLn1	
Capacity (veh/h)	-1612	-	-1610	-	-1021		
HCM Lane V/C Ratio	-	-	-	-	-	-	-0.003
HCM Control Delay (s)	0	0	-	-	0	-	-1
HCM Lane LOS	A	A	-	-	A	-	-
HCM 95th \%tile Q(veh)	-	0	-	-	0	-	-

	Intersection					
Int Delay, s/veh	0.2					
Movement.	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			\uparrow	F	
Traffic Vol, veh/h		4	0	446	423	13
Future Vol, veh/h	6	4	0	446	423	13
Conficting Peds, \#hr	0	0	0	0	0	0
Sign Control Sto	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	.	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\#	-	-	0	0	
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heawy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	7	4	0	485	460	14

Intersection	0.3					
Int Delay, s/veh						
Movement W	WBL	R	NBT	NBR	SBL	SBT
Lane Configurations	V		F			\uparrow
Traffic Vol, veh/h	5	5	1041	5	5	659
Future Vol, veh/h	5	5	1041	5	5	659
Confilicting Peds, \#/hr	0	0	0	0	0	0
Sign Control - St	Stop	top	Free	Free	Free	Free
RT Channelized			-	None	.	None
Storage Length	0	-	-	-	-	
Veh in Median Storage, \#	\# 0	-	0	--	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heav Vehicles, \%	2		2	2	2	2
Mvmt Flow -	5	5	1132	5		

22: EHC Driveway/Mozart St \& 47th Street

Intersection												
Intersection Delay, s/veh 30.2												
Intersection LOS - D												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			¢			\$	
Traffic Vol, veh/h	61	580	0	1	493	40	0	0	0	29	0	20
Future Vol, veh/h	61	580	0	1	493	40	0	0	0	29	0	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	66	630	0	1	536	43	0	0	0	32	0	22
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conficting Approach Left	SB			NB				EB		WB		
Confficting Lanes Left	1			1				1		1		
Conficting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	38			22.7				0		10.3		
HCMLOS	E			c				-		B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	0\%	10\%	0\%	59\%
Vol Thru, \%	100\%	90\%	92\%	0\%
Vol Right, \%	0\%	0\%	7\%	41\%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	0	641	534	49
LTVol	0	61	1	29
Through Vol	0	580	493	0
RTVOI	0	0	40	20
Lane Flow Rate	0	697	580	53
Geometry Grp	1	1	1	1
Degree of Util (X)	0	0.92	0.776	0.098
Departure Headway (Hd)	6.983	4.755	4.813	6.629
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	0	759	743	544
Sevice Time	4.988	2.825	2.887	4.629
HCM Lane V/C Ratio	0	0.918	0.781	0.097
HCM Control Delay	10	38	22.7	10.3
HCMLane LOS	N	E	C	B
HCM 95th-tile Q	0	12.7	7.6	0.3

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	F	4	4	「	1	4	7	1	क	
Traffic Volume (vph)	58	378	189	95	393	55	100	353	94	54	527	45
Future Volume (vph)	58	378	189	95	393	55	100	353	94	54	527	45
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	65		70	65		80	65		110	65		150
Storage Lanes	1		1	1		1	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.98			0.98			1.00			0.99	1.00	
Frt			0.850			0.850			0.850		0.988	
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1836	0
Flt Permitted	0.365			0.381			0.222			0.436		
Satd. Flow (perm)	668	1863	1583	699	1863	1583	412	1863	1583	807	1836	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			105			84			84		9	
Link Speed (mph)		30			30			30			30	
Link Distance (t)		331			330			247			662	
Travel Time (s)		7.5			7.5			5.6			15.0	
Confl. Peds. (\#/hr)	31		26	26		31	11		12	12		11
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	63	411	205	103	427	60	109	384	102	59	573	49
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	63	411	205	103	427	60	109	384	102	59	622	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(f)		12			12			12			12	
Link Offset(f)		0			0			0			0	
Crosswalk Width(t)		16			16			16			16	
Two way Left Tum Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Tum Type	Perm	NA	NA	Perm	NA	NA	Perm	NA	NA	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Minimum Split (s)	31.0	31.0		31.0	31.0		34.0	34.0		34.0	34.0	
Total Split (s)	31.0	31.0		31.0	31.0		34.0	34.0		34.0	34.0	
Total Split (\%)	47.7\%	47.7\%		47.7\%	47.7\%		52.3\%	52.3\%		52.3\%	52.3\%	
Maximum Green (s)	27.0	27.0		27.0	27.0		30.0	30.0		30.0	30.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	17.0	17.0		17.0	17.0		20.0	20.0		20.0	20.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (\#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	27.0	27.0	0.0	27.0	27.0	0.0	30.0	30.0	0.0	30.0	30.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR .	SBL	SBT	SBR
Actuated g/C Ratio	0.42	0.42	0.00	0.42	0.42	0.00	0.46	0.46	0.00	0.46	0.46	
v/c Ratio	0.23	0.53	1.95	0.36	0.55	0.71	0.57	0.45	1.21	0.16	0.73	
Control Delay	15.0	17.4	477.3	17.5	17.8	51.4	28.4	14.0	185.0	11.6	20.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	15.0	17.4	477.3	17.5	17.8	51.4	28.4	14.0	185.0	11.6	20.3	
LOS	B	B	F	B	B	D	C	B	F	B	C	
Approach Delay		156.0			21.2			45.9			19.5	
Approach LOS		F			C			D			B	
STtops (vph)	40	273	61	65	286	2	76	228	11	32	442	
Fuel Used (gal)	1	4	19	1	4	1	1	3	4	1	8	
COEmissions (g/hr)	38	267	1341	66	281	51	83	206	264	41	542	
NOx Emissions (g / hr)	7	52	261	13	55	10	16	40	51	8	105	
VOC Emissions (g / hr)	9	62	311	15	65	12	19	48	61	9	126	
Dilemma Vehicles (\#)	0	0	0	0	0	0	0	0	0	0	0	
Queue Length 50th (f)	15	117	-85	27	123	0	30	97	~ 15	13	186	
Queue Length 95th (ft)	41	193	\#201	64	203	\#48	\#100	162	\#101	34	305	
Internal Link Dist (fi)		251			250			167			582	
Turn Bay Length (f)	65		70	65		80	65		110	65		
Base Capacity (vph)	277	773	105	290	773	84	190	859	84	372	852	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.23	0.53	1.95	0.36	0.55	0.71	0.57	0.45	1.21	0.16	0.73	

Intersection Summary

Area Type: Other
Cycle Length: 65
Actuated Cycle Length: 65
Offset: $0(0 \%)$, Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Pretimed
Maximum v/c Ratio: 1.95
Intersection Signal Delay: 62.5 Intersection LOS: E
Intersection Capacity Utilization $77.2 \% \quad$ ICU Level of Service D
Analysis Period (min) 15
Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: California Ave \& 47th Street

| Approach | EB | WB | NB | SB |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HCM Control Delay, S | 0 | 0 | 0 | 9.2 |
| HCMLOS | | | A | A |

Intersection						
Int Delay, s/veh 1.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations \quad -				\uparrow	F	
Trafic Vol, veh/h	7	57	34	661	706	20.
Future Vol, veh/h	7	57	34	661	706	20
Connicing Peds, \#hr	0	0	0	0	0	0
$\frac{\text { Sign Control }}{\text { RT Chanelized }}$	Stop	Stop	Free	Free	Free	Free
	-	None		None		None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#		-	-	0	0	
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	8	62	37	718	767	22

Intersection							
Int Delay, s/veh - 0.2							
Movement - EBL EBT WBT WBR SBL SBR							
Lane Configurations A $^{\text {a }}$							
Traffic Vol, veh/h	20	591	537	54			1
Future Vol, veh/h	20	591	537	54	1		1
Conflicting Peds, \#hr	0	0	0	0	0		0
Sign Control F	Free	Free	Free	Free	Stop		Stop
RT Channelized		None		None			None
Storage Length	-	-	-	-	0		
Veh in Median Storage, \#	+	0	0	-	0		-
Grade, \%	-	0	0	-	0		
Peak Hour Factor	92	92	92	92	92		92
Heavy Vehicles, \%	2	2	2	2	2		2
Mumt Flow	22	642	584	59	1		

	Intersection					
Int Delay, s/veh 2	2.9					
Movement E	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			${ }_{4}$	\dagger	
Traffic Vol, veh/h	32	74	31	665	756	5
Future Vol, veh/h	32	74	31	665	756	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Sto		Stop	Free	Free	Free	Free
		None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	35	80	34	723	822	5

Approach	EB	NB	SB
HCM Control Delay, S	40.5	0.4	0
HCM LOS	E		

Minor Lane/Major Mumt	NBL	NBT EBLn

	Intersection					
Int Delay, s/veh 0.2						
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		F			\uparrow
Traffic Vol, veh/h ---	5	5	691	5	5	825
Future Vol, veh/h	5	5	691	5	5	825
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control Stop Stop Free Free Free Free						
RT Channelized - None - None - None						
Storage Length		-	-	-	-	-
		-	0	-	-	0
Grade, \%	0	-	0	-		0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Fiow	5	5	751	5	5	897

Major/Minor	Major1		Major2		Minor1			Minor2		
Conflicting Flow All	-	0	0643	0	01251	1232	642	1244	1233	580
Stage 1			--	-	\cdots	642		590	590	
Stage 2	-		-	-	- 609	590		654	643	
Cintical Hdwy	-	-	- 4.12	-	- 7.12	6.52	6.22	7.12	6.52	6.22
Citical Hdwy Stg 1	-	-	- -	-	6.12	5.52		6.12	5.52	
Cintical Hdwy Stg 2		-	-	-	6.12	5.52	-	6.12	5.52	
Follow-up Hdwy	-	-	- 2.218	-	- 3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	0	-	- 942	-	-149 $-\quad 1$	177	474	151	177	
Stage 1	0	-	-	-	463	469	-	494	495	-
Stage 2	0	-	- -	-	482	495	-	456	468	-
Platoon blocked, \%		-	-	-	-					
Mov Cap-1 Maneuver	-	-	- 942	-	-137	176	474	142	176	514
Mov Cap-2 Maneuver	-	-	- -		- 137	176	-	142	176	-
Stage 1		-	-	-	- -463	469	-	494	491	
Stage 2	-		- -	-	444	491		432	468	
Approach	EB		WB		NB		SB			
HCM Control Delay,	0		0.1		26.6			24.5		
HCMLOS					D			C		

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	WBR SBLn1
Capacity (veh/h)	215	-	-	942	-	245
HCM Lane V/C Ratio	0.228	-	-	0.006	-	- 0.248
HCM Control Delay (s)	26.6	-	-	8.8	0	- 24.5
HCM Lane LOS	D	-	-	A	A	C
HCM 95th \% tile Q(veh)	0.8			0		

APPENDIX C
 TRIP GENERATION CALCULATIONS

Land Use: 630 Clinic

Description

A clinic is any facility that provides limited diagnostic and outpatient care but is unable to provide prolonged in-house medical and surgical care. Clinics commonly have lab facilities, supporting pharmacies, and a wide range of services (compared to the medical office, which may only have specialized or individual physicians). Hospital (Land Use 610), free-standing emergency room (Land Use 650), and medical-dental office building (Land Use 720) are related uses.

Additional Data

Time-of-day distribution data for this land use are presented in Appendix A. For the three general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 10:30 and 11:30 a.m. and 3:30 and 4:30 p.m., respectively.

The average numbers of person trips per vehicle trip at the five general urban/suburban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.40 during Weekday, AM Peak Hour of Generator
- 1.69 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 1.52 during Weekday, PM Peak Hour of Generator

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), California, New Hampshire, Texas, and Vermont.

Source Numbers

440, 734, 878, 926, 972

	Averag	Rate	Fitted	
	Enter	Exit	Enter	Exit
AM Peak 7-9 Adjacent	125	35		
PM Peak 4-6 Adjacent	41	101	32	32
AM Peak Generator	132	96	87	87
PM Peak Generator	93	109	68	68
Trip Generation Calculations				
TERRA Project 21-216-001 EHC Bris	ghton Par			
ITE Trip Generation Manual 10th	dition			
Land Use Code (630) Clinic				
Independent Variable:		$00 \mathrm{Sq} . \mathrm{Ft}$		
Value of Independent Varible:		. 572		
Setting/Location:		neral Ur	n/Subur	

Trip Generation Calculations
TERRA Project 21-216-001 EHC Brighton Park
ITE Trip Generation Manual 10th Edition
Land Use Code (630) Clinic
Average Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
Time Period: Peak Hour of Adjacent Street Traffic, Weekday
Setting/Location: General Urban/Suburban
Directional Distribution: 50\% Entering
50\% Exiting
Average Rate: 38.16 trips per 1000 Sq. Ft. GFA
Value of 1000 Sq. Ft. GFA: 43.572
Average Rate Method
Number of Trips: 831 Entering831 Exiting

Clinic

Vehicle Trip Ends vs: 1000 Sq. Ft GFA
 Ona: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 3 1000 Sq. Ft. GFA: 21
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
38.16	$25.25-86.21$	66.06

Data Plot and Equation Caution - Small Sample Size

Trip Generation Calculations
TERRA Project 21-216-001 EHC Brighton Park
ITE Trip Generation Manual 10th Edition
Land Use Code (630) Clinic
Average Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
Time Period: Peak Hour of Adjacent Street Traffic, One Hour between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Directional Distribution: 78\% Entering22\% Exiting
Average Rate: 3.69 trips per 1000 Sq. Ft. GFA
Value of 1000 Sq. Ft. GFA: 43.572
Average Rate Method
Number of Trips:125 Entering35 Exiting

Clinic (630)

Vehicle Trip Ends vs: 1000 Sq. Ft GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 4 1000 Sq. Ft. GFA: 21
Directional Distribution: 78\% entering, 22\% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA
Average Rate Range of Rates Standard Deviation
3.69
2.27-9.36 2.82

Data Plot and Equation
Caution - Small Sample Size

Trip Generation Calculations
TERRA Project 21-216-001 EHC Brighton Park
ITE Trip Generation Manual 10th Edition
Land Use Code (630) Clinic
Average Vehicle Trip Ends vs: 1000 Sq. Ft. GFATime Period: Peak Hour of Adjacent Street Traffic,One Hour between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Directional Distribution: 29\% Entering
71\% Exiting
Average Rate: 3.28 trips per 1000 Sq. Ft. GFA
Fitted Curve Equation: $\operatorname{Ln}(T)=0.72 \operatorname{Ln}(X)+1.97$
Value of 1000 Sq. Ft. GFA: 43.572
Average Rate Method
Number of Trips: 41 Entering
101 Exiting
Fitted Curve Equation
Number of Trips:32 Entering
32 Exiting

Clinic (630)

```
Vehicle Trip Ends vs: }1000\mathrm{ Sq. Ft GFA
    On a: Weekday,
    Peak Hour of Adjacent Street Traffic,
    One Hour Between 4 and 6 p.m.
    Setting/Location: General Urban/Suburban
    Number of Studies: 5
        1000 Sq. Ft. GFA: }1
Directional Distribution: 29% entering, 71% exiting
```


Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate
Range of Rates
1.93-7.00

Standard Deviation
3.28

Data Plot and Equation Caution - Small Sample Size

Trip Generation Calculations
TERRA Project 21-216-001 EHC Brighton Park
ITE Trip Generation Manual 10th Edition
Land Use Code (630) Clinic
Average Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
Time Period: AM Peak Hour of Generator
Setting/Location: General Urban/Suburban
Directional Distribution: 58\% Entering42\% Exiting
Average Rate:5.22 trips per 1000 Sq. Ft. GFA
Fitted Curve Equation: $\operatorname{Ln}(T)=0.71 \operatorname{Ln}(X)+2.33$
Value of 1000 Sq. Ft. GFA: 43.572
Average Rate Method
Number of Trips: 132 Entering
96 Exiting
Fitted Curve Equation
Number of Trips:
87 Exiting 87 Exiting

Clinic
 (630)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
 On a: Weekday,
 AM Peak Hour of Generator

SettinglLocation: General Urban/Suburban
Number of Studies: 8 1000 Sq. FI. GFA: 10
Directional Distribution: 58% entering, 42% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate
5.22

Range of Rates
2.22-15.00

Standard Deviation
3.37

Data Plot and Equation

Trip Generation Calculations
TERRA Project 21-216-001 EHC Brighton Park
ITE Trip Generation Manual 10th Edition
Land Use Code (630) Clinic
Average Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
Time Period: PM Peak Hour of Generator
Setting/Location: General Urban/Suburban
Directional Distribution: 46\% Entering54\% Exiting
Average Rate: 4.64 trips per 1000 Sq. Ft. GFA
Fitted Curve Equation: $\operatorname{Ln}(T)=0.82 \operatorname{Ln}(X)+1.9$
Value of 1000 Sq. Ft. GFA: 43.572
Average Rate Method
Number of Trips: 93 Entering109 Exiting
Fitted Curve Equation
Number of Trips: 68 Entering68 Exiting

Clinic

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
 On a: Weekday,
 PM Peak Hour of Generator
 Setting/Location: General Urban/Suburban
 Number of Studies: 8 1000 Sq. Ft. GFA: 10
 Directional Distribution: 46% entering, 54% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA		
Range of Rates	Standard Deviation	
4.64	$1.43-16.80$	3.84

Data Plot and Equation

APPENDIX D
 OPENING DAY SYNCHRO OUTPUT

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	k	4	「	4	4	7	\%	4	$\stackrel{1}{1}$	1	ち	
Traffic Volume (vph)	53	409	134	92	284	46	155	543	196	91	374	70
Future Volume (vph)	53	409	134	92	284	46	155	543	196	91	374	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	65		70	65		80	65		110	65		150
Storage Lanes	1		1	1		1	1		1	1		0
Taper Length (t)	25			25			25			25		
Lane Utili. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.96			0.96			0.99			0.99	0.99	
Fit			0.850			0.850			0.850		0.976	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1808	0
FIt Permitted	0.490			0.346			0.344			0.249		
Satd. Flow (perm)	875	1863	1583	620	1863	1583	637	1863	1583	458	1808	0
Right Tum on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			84			84			108		19	
Link Speed (mph)		30			30			30			30	
Link Distance (t)		331			330			247			662	
Travel Time (s)		7.5			7.5			5.6			15.0	
Confl. Peds. (\#/hr)	57		70	70		57	13		34	34		13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	58	445	146	100	309	50	168	590	213	99	407	76
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	58	445	146	100	309	50	168	590	213	99	483	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		12			12			12			12	
Link Offset(f)		0			0			0			0	
Crosswalk Width(t)		16			16			16			16	
Two way Left Tum Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	NA	Perm	NA	NA	Perm	NA	NA	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Minimum Split (s)	31.0	31.0		31.0	31.0		34.0	34.0		34.0	34.0	
Total Split (s)	31.0	31.0		31.0	31.0		34.0	34.0		34.0	34.0	
Total Split (\%)	47.7\%	47.7\%		47.7\%	47.7\%		52.3\%	52.3\%		52.3\%	52.3\%	
Maximum Green (s)	27.0	27.0		27.0	27.0		30.0	30.0		30.0	30.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	17.0	17.0		17.0	17.0		20.0	20.0		20.0	20.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (\#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	27.0	27.0	0.0	27.0	27.0	0.0	30.0	30.0	0.0	30.0	30.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.42	0.42	0.00	0.42	0.42	0.00	0.46	0.46	0.00	0.46	0.46	
v/c Ratio	0.16	0.58	1.74	0.39	0.40	0.60	0.57	0.69	1.97	0.47	0.57	
Control Delay	13.4	18.3	393.8	18.9	15.3	34.8	22.3	18.9	485.0	21.3	15.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.4	18.3	393.8	18.9	15.3	34.8	22.3	18.9	485.0	21.3	15.6	
LOS	B	B	F	B	B	C	C	B	F	C	B	
Approach Delay		102.3			18.2			121.8			16.6	
Approach LOS		F			B			F			B	
Stops (vph)	35	302	36	65	189	1	119	414	64	66	301	
Fuel Used(gal)	0	4	11	1	3	0	2	6	20	1	5	
CO Emissions (g/hr)	33	297	789	66	186	31	134	441	1426	86	375	
NOx Emissions (g / hr)	6	58	154	13	36	6	26	86	277	17	73	
VOC Emissions (g / hr)	8	69	183	15	43	7	31	102	331	20	87	
Dilemma Vehicles (\#)	0	0	0	0	0	0	0	0	0	0	0	
Queue Length 50th (it)	14	130	~ 53	27	82	0	46	174	~ 89	26	127	
Queue Length 95th (ft)	36	213	\#154	66	140	\#33	110	281	\#208	71	211	
Internal Link Dist (ft)		251			250			167			582	
Turn Bay Length (ft)	65		70	65		80	65		110	65		
Base Capacity (vph)	363	773	84	257	773	84	294	859	108	211	844	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.58	1.74	0.39	0.40	0.60	0.57	0.69	1.97	0.47	0.57	

Intersection Summary

Area Type: Other
Cycle Length: 65
Actuated Cycle Length: 65
Offset: $0(0 \%)$, Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Pretimed
Maximum v/c Ratio: 1.97
Intersection Signal Delay: 76.1 Intersection LOS: E
Intersection Capacity Utilization 74.6\% ICU Level of Service D
Analysis Period (min) 15
τ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: California Ave \& 47th Street

Intersection
Intersection Delay, s/veh
Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow			\uparrow			Φ	
Traffic Vol, veh/h	88	519	18	14	392	78	1	0	0	42	0	28
Future Vol, veh/h	88	519	18	14	392	78	1	0	0	42	0	28
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mumt Fiow	96	564	20	15	426	85	1	0	0	46	0	30
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conficting Approach Left	SB			NB			EB			WB		
Conficting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	35.1			18.8			10.2			10.6		
HCMLOS	E			C			B			B		

Lane	NBLT1	EBLn1	WBLn1	SBL.n1
Vol Left, \%	100\%	14\%	3\%	60\%
Vol Thru, \%	0\%	83\%	81\%	0\%
Vol Right, \%	0\%	3\%	16\%	40\%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	1	625	484	70
LTVol	1	88	14	42
Through Vol	0	519	392	0
RT Vol	0	18	78	28
Lane Flow Rate	1	679	526	76
Geometry Grp	1	1	1	1
Degree of Util (X)	0.002	0.9	0.706	0.138
Departure Headway (Hd)	7.139	4.769	4.833	6.525
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	504	754	742	553
Service Time	5.146	2.851	2.921	4.525
HCM Lane V/C Ratio	0.002	0.901	0.709	0.137
HCM Control Delay	10.2	35.1	18.8	10.6
HCM Lane LOS	B	E	C	B
$\begin{array}{llllllllllllll}\text { HCM 95th-ile Q } & 0 & 11.9 & 5.9 & 0.5\end{array}$				

Minor Lane/Major Mumt	EBL	EBT WBT WBR SBLn1
Capacity (veh/h)	1337	-
HCM Lane V/C Ratio	-	-682
HCM Control Delay (s)	0	-
HCM Lane LOS	-0.057	
HCM 95th \%otile Q(veh)	A	-

Intersection						
Int Delay, S/veh 0.3						
Movement . EBL EBT WBT WBR SBL SBR						
Lane Configurations		${ }_{4}$	F		Y	
Traffic Vol, veh/h	36	537	487	93	0	0
Future Vol, veh/h Conficting Peds, \#hr	36	537	487	93	0	0
	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None		None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#		0	0	-	0	-
Grade, \%	-	0		-	0	-
Peak ${ }^{\text {Hour Factor }}$	92	92	92	92	92	92
Heay Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	39	584	529	101	0	0

Intersection						
Int Delay, s/veh	21.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			\uparrow	H	
Traffic Vol, veh/h	33	122	188	871	566	35
Future Vol, veh/h	33	122	188	871	566	35
Conflicting Peds, \#hr	0	O	0	0	0	0
Sign Control S	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	.	-	0	0	
Grade, \%	0	-		0	0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Venicles, \%	2	2	2	2	2	2
Mvit Flow	36	133	204	947	615	38

Intersection						
Int Delay, s/veh 0.3						
Movement : W	WBL	WBR	NBT	NBR	SBL	SBT
Traffic Vol, veh/h	6	5	1054	30	9	687
Future Vol, veh/h	6	5	1054	30	9	687
Conficting Peds, \#hr	0	0	0	0	0	0
Sign Control Stop Stop Free Free Free Free						
RT Channelized - None- - None - None						
Storage Length 0						
Veh in Median Storage, \#		-	0		-	0
Grade, \%		-	0	-	-	0
Peak Hour Factor - 9		92	92	92	92	92
Heayy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	7	5	1146	33	10	747

Major/Minor
Conflicting Flow All
Stage 1
Stage 2

Intersection						
Int Delay, s/veh	3.1					
Movement EBL EBR NBL NBT SBT SBR						
Lane Configurations ${ }_{\text {c }}$						
Traffic Vol, veh/h	3	1	34	0	0	56
Future Vol, veh/h	3	1	34	0	0	56
Conficting Peds, \#hr	0	0	0	0	0	0
Sign Control Stop Stop Free Free Free Free						
RT Channelized	-	None	-	None	-	None
Storage Length 0--						
Veh in Median Storage, \# 0						
Grade, \% 0						
Peak Hour Factor	92	92	92	92	92	92
Heaw Vehicles, \%	2	2	2	2	2	2
Mumt Flow	3	1	37	0	0	61

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	4	${ }^{7}$	7	4	$\stackrel{7}{1}$	\%	4	F	1	1	
Traffic Volume (vph)	68	406	189	96	415	64	100	352	90	59	532	56
Future Volume (vph)	68	406	189	96	415	64	100	352	90	59	532	56
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	65		70	65		80	65		110	65		150
Storage Lanes	1		1	1		1	1		1	1		0
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.98			0.99			1.00			0.99	1.00	
Fr			0.850			0.850			0.850		0.986	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1831	0
Flt Permitted	0.340			0.351			0.207			0.437		
Satd. Flow (perm)	623	1863	1583	644	1863	1583	384	1863	1583	808	1831	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			98			84			84		11	
Link Speed (mph)		30			30			30			30	
Link Distance (tt)		331			330			455			662	
Travel Time (s)		7.5			7.5			10.3			15.0	
Confl. Peds. (\#/hr)	31		26	26		31	11		12	12		11
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	74	441	205	104	451	70	109	383	98	64	578	61
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	74	441	205	104	451	70	109	383	98	64	639	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(t)		16			16			16			16	
Two way Left Tum Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	NA	Perm	NA	NA	Perm	NA	NA	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Minimum Split (s)	31.0	31.0		31.0	31.0		34.0	34.0		34.0	34.0	
Total Split (s)	31.0	31.0		31.0	31.0		34.0	34.0		34.0	34.0	
Total Split (\%)	47.7\%	47.7\%		47.7\%	47.7\%		52.3\%	52.3\%		52.3\%	52.3\%	
Maximum Green (s)	27.0	27.0		27.0	27.0		30.0	30.0		30.0	30.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	17.0	17.0		17.0	17.0		20.0	20.0		20.0	20.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (\#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	27.0	27.0	0.0	27.0	27.0	0.0	30.0	30.0	0.0	30.0	30.0	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.42	0.42	0.00	0.42	0.42	0.00	0.46	0.46	0.00	0.46	0.46	
v / C Ratio	0.29	0.57	2.09	0.39	0.58	0.83	0.62	0.45	1.17	0.17	0.75	
Control Delay	16.4	18.2	540.1	18.8	18.4	73.8	32.7	14.0	168.4	11.8	21.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	16.4	18.2	540.1	18.8	18.4	73.8	32.7	14.0	168.4	11.8	21.2	
LOS	B	B	F	B	B	E	C	B	F	B	C	
Approach Delay		166.6			24.7			43.1			20.4	
Approach LOS		F			C			D			C	
STops (Vph)	46	299	70	68	308	3	75	227	9	35	456	
Fuel Used (gal)	1	4	22	1	4	1	1	4	3	1	8	
CO Emissions (ghr)	46	294	1514	69	303	80	100	245	241	45	566	
NOx Emissions (g/hr)	9	57	295	13	59	16	20	48	47	9	110	
VOC Emissions (g/hr)	11	68	351	16	70	19	23	57	56	10	131	
Dilemma Vehicles (\#)	0	0	0	0	0	0	0	0	0	0	0	
Queue Length 50 th (t)	19	129	-91	28	132	0	31	97	~ 12	14	194	
Queue Length 95th (t)	48	211	\#207	67	217	\#60	\#105	162	\#96	36	\#319	
Internal Link Dist (tt)		251			250			375			582	
Turn Bay Length (ft)	65		70	65		80	65		110	65		
Base Capacity (vph)	258	773	98	267	773	84	177	859	84	372	851	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.29	0.57	2.09	0.39	0.58	0.83	0.62	0.45	1.17	0.17	0.75	

Intersection Summary

Área Type: OÖther
Cycle Length: 65
Actuated Cycle Length: 65
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Pretimed
Maximum v/c Ratio: 2.09
Intersection Signal Delay: 66.4
Intersection LOS: E
Intersection Capacity Utilization 78.2\% ICU Level of Service D
Analysis Period (min) 15
Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: California Ave \& 47th Street

Intersection \quad I.
Intersection Delay , s/veh
Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			4			4	
Traffic Vol, veh/h	61	599	0	1	512	40	0	0	0	29	0	20
Future Vol, veh/h	61	599	0	1	512	40	0	0	0	29	0	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mumt Flow	66	651	0	1	557	43	0	0	0	32	0	22
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conficting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	44.1			25.2				0		10.5		
HCM LOS	E			D				-		B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	0\%	9\%	0\%	59\%
Vol Thru, \%	100\%	91\%	93\%	0\%
Vol Right, \%	0\%	0\%	7\%	41\%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	0	660	553	49
LTVol	0	61	1	29
Through Vol	0	599	512	0
RT Vol	0	0	40	20
Lane Flow Rate	0	717	601	53
Geometry Grp	1	1	1	1
Degree of Util (X)	0	0.953	0.808	0.099
Departure Headway (Hd)	7.082	4.782	4.842	6.718
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	0	753	739	537
Service Time	5.087	2.855	2.92	4.718
HCM Lane V/C Ratio	0	0.952	0.813	0.099
HCM Control Delay	10.1	44.1	25.2	10.5
HCM Lane LOS	N	E	D	B
HCM 95th-tile Q	0	14.2	8.5	0.3

Intersection						
Int Delay, s/veh 6						
Movement EB	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			\uparrow	\uparrow	
Traffic Vol, veh/h	28	15	7	0	0	21
Future Vol, veh/h	28	15	7	0	0	21
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stop	Stop	Stop	Free	Free	Free	Free
RTChannelized	-	None	\therefore	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	30	16	8	0	0	23

Major/Minor	Major1			ajar2		Minor1		
Conflicting Flow All	627	0	0	610	0	01359	1372	597
Stage 1	-	-	-		-	- 729	729	
Stage 2	-	-	-		-	630	643	
Critical Hdw	4.12	-	-	4.12	-	- 6.42	6.52	6.22
Critical Hdwy Stg 1	-	-	-	.	-	5.42	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	5.42	5.52	
Follow-up Hdwy	2.218	-	-	2.218	-	- 3.518	4.018	3.318
Pot Cap-1 Maneuver	955	-	-	969	-	- 164	146	503
Stage 1	-	-	-		-	- 477	428	-
Stage 2	-	-	-	-	-	- 531	468	-
Platoon blocked, \%		-	-		-	-		
Mov Cap-1 Maneuver	955	-	-	969	-	- 145	0	503
Mov Cap-2 Maneuver	-	-	-	-	-	- 145	0	.
Stage 1	-	-	-	.	-	- 427	0	-
Stage 2	-	-	-	-	-	- 524	0	-

Approach	EB.	WB
HCM Control Delay, S	0.9	0.1
		NB

Intersection						
Int Delay, s/veh	0.8					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		F			\uparrow
Trafic Vol, veh/h	20	5	710	2	10	897
Future Vol, veh/h	20	5	710	2	10	897
Conficting Peds, \#hr	0	0	0	0	0	0
Sign Control Sto		Stop	Free	Free	Free	Free
RT Channelized	\cdots	None	--	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-		0
Peak Hour Factor	92	92	92	92	92	92
Heaw Vehicles, \%	2	2	2		2	2
Mumt Flow	22	5	772	2	11	975

Major/Minor	Major1		Major2		Minor1			Minor2		
Conflicting Flow All	-	0	0664	0	01326	1307	653	1339	1318	590
Stage 1	-	-	--	-	- 653	653	-	654	654	-
Stage 2	-	-	-	-	- 673	654	-	685	664	-
Critical Hdwy	-	-	- 4.12	-	- 7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	- -	-	- 6.12	5.52	-	6.12	5.52	-
Critical $\mathrm{Hdw} y \mathrm{Stg} 2$	-	-	- -	-	- 6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	-	-	- 2.218	-	- 3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	0	-	- 925	-	-133	160	467	130	157	508
Stage 1	0	-	- -	-	- 456	464	-	456	463	-
Stage 2	0	-	- -	-	- 445	463	-	438	458	-
Platoon blocked, \%		-	-	-	-					
Mov Cap-1 Maneuver	-	-	925	-	- 118	152	467	108	149	508
Mov Cap-2 Maneuver	-	-	- -	-	- 118	152	-	108	149	-
Stage 1	-	-	- -	-	- 456	464	-	456	439	-
Stage 2	-	-	- -	-	- 391	439	-	378	458	-
Approach EB			WB		NB			SB		
HCM Control Delay, s	0		0.5		32.2			30.7		
HCM LOS					D			D		

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT WBR SBLn1	
Capacity (veh/h)	229	-	-	925	-	-
HCM Lane V/C Ratio	0.432	-	-0.034	-	-0.304	
HCM Control Delay (s)	32.2	-	-	9	0	-30.7
HCM Lane LOS	D	-	-	A	A	-
HCM 95th \%tile Q(veh)	2	-	-0.1	-	-	1.2

PROJECT NARRATIVE

APPLICANT: ESPERANZA HEALTH CENTERS, an Illinois not-for-profit corporation

SUBJECT PROPERTY: 2833 W. 47th Street; 2759-2757 and 2749-2745 W. 47th Street; and 4717-4723 S. California Avenue

The Applicant is Esperanza Health Centers, an Illinois not-for-profit corporation ("Esperanza") and a Federally Qualified Health Center. In 2004, residents of the neighborhoods of Pilsen and Little Village on Chicago's Southwest Side joined to address the critical lack of accessible health services in the area. They opened a community health center on South California Avenue called Esperanza, the Spanish word for "hope." Since then, Esperanza has provided bilingual, high quality primary care, behavioral health and wellness services to the community, regardless of immigration status, insurance status, or ability to pay. Esperanza operates five sites in Brighton Park, Gage Park, Little Village, Marquette Park, and South Lawndale to deliver care to over 35,000 patients each year from communities across the Southwest Side.

In 2019, Esperanza opened its health center in Brighton Park to serve an additional 20,000 patients each year with high quality healthcare. In 2021, it welcomed Esperanza at VIDA Pediatrics, a thriving pediatrics practice in Gage Park, to its network of clinics that offers a full array of pediatric services exclusively.

Esperanza's commitment to offering care of the highest quality is made clear by its designation as a National Quality Leader by HRSA in 2016, 2017, 2019, and 2020, which ranks Esperanza among the top 3% of health centers in the nation and the top two in Illinois for our quality of care.

Esperanza is planning a significant expansion of health care services at its flagship location, Esperanza Brighton Park ("BP1"), located at 4700 S. California Ave. Esperanza plans to construct a separate second building ("BP2") immediately south of and adjacent to BP1. Both buildings will be located on the same zoning lot.

BP2 will provide more needed healthcare and social services to Chicago's Southwest side. The 43,000-square-foot annex will offer expanded medical and behavioral health services, comprehensive senior programming, a family medicine residency program with Rush University Medical Center (to train the next generation of community-based physicians), and multiple indoor and outdoor spaces for health, learning, and recreation. With a community "superlobby," full-service café and public plaza, BP1 and BP2 will be a new vision for a 21 st-century town square, the likes of which the Southwest side has never seen. The new facility together with BP1 has been designed to fit well within the surrounding physical and cultural context. Sparked by the desire to unify the healthfocused facilities, the massing defines a civic plaza that extends from the existing green spaces to the north, making all components of the site cohere. Visitors are drawn into the protected and landscaped plaza, which serves as a flexible, approachable, safe public forum for a multitude of activities year-round. A linked pathway unites BP1 and BP2, not
only providing safety for pedestrians but doubling as a $1 / 4$ mile walking track that encourages movement and physical activity.

Taking cues from the nearby buildings, BP2 is scaled as a two-story complex with a translucent base topped by an elegantly detailed perforated metal screen. The screen, silver-toned where visible from the street and vivid orange where facing the new plaza, both shelters and shades the spaces inside, while unifying the campus within a cohesive architectural expression. Inside the building, a welcoming lobby receives guests in a double-height, light-filled space. Inside, spaces are arranged along clear circulation patterns that guide those coming for medical care, gatherings, or activities like a cooking class, a workout, or a healthy café snack. Public spaces can expand to the outdoors, allowing the energy from indoor activities to spill out to the courtyard when the weather permits. Also, Esperanza plans to host social service agencies within the building so that patients can receive assistance addressing their non-medical needs without having to make a separate trip across town. Esperanza will invite local arts organizations to offer on-site programming, and create flexible spaces where local residents can launch their own social clubs, building bridges among neighbors and decreasing social isolation. In essence, BP1 and BP2 will offer more than high quality medical care. It will be a welcoming and much-needed center for civic engagement on the Southwest side.

Esperanza has entered into a contract to purchase approximately 53,443 feet of land on the east side of S. California Ave. and the south side of E. $47^{\text {th }}$ Street. The land is comprised of the following:

South Side of E. 47 ${ }^{\text {th }}$ Street

ADDRESS	PIN	LOT SIZE (SF)
2759 W 47TH ST	$19-12-200-001-0000$	2,439
2757 W 47TH ST	$19-12-200-002-0000$	2,448
2749 W 47TH ST	$19-12-200-005-0000$	2,448
2745 W 47TH ST	$19-12-200-006-0000$	$\underline{2,448}$
		9,783

East Side of S. California Ave

ADDRESS	PIN	LOT SIZE (SF)
4717 S CALIFORNIA AVE	$19-12-200-031-0000$	33,641
UNKNOWN ADDRESS	$19-12-200-033-0000$	
(SOUTH OF 4717 S		10,019
		43,660

To serve BP1 and BP2, Esperanza proposes to construct a 104 space landscaped surface parking lot on the vacant lots on the east side of S. California Ave. At this time, Esperanza does not have a development plan for the vacant lots on the south side of E. $4^{\text {th }}$ Street.

The proposed planned development area is comprised of (a) the lot on which BP1 is located and on which BP2 will be located and (b) the lots on the south side of E. 47th Street and the east side of S. California Ave. The approximate net site area is 216,357 square feet. The gross site area is approximately 249,323 square feet.

All of the subject property, except for the vacant lots on the south side of E. 47th Street are located in the Brighton Park Industrial Corridor.

According to the Chicago Metropolitan Agency for Planning, the subject property is located in the Brighton Park Community Area. The following is the demographic data for this area as of August 2021:

- Total Population: 45,053
- Average Household size: 3.3
- Median household income: $\$ 41,650$
- Per Capita Income: $\$ 17,389$

Based on the following table, the subject property is located in three different zoning districts:

ADDRESS	PIN	SF (PER COUNTY GIS)	ZONING DISTRICT
4700 S CALIFORNIA AVE	$19-12-101-041-0000$	162,914	C3-3
2759 W 47TH ST	$19-12-200-001-0000$	2,439	B3-1
2757 W 47TH ST	$19-12-200-002-0000$	2,448	B3-1
2749 W 47TH ST	$19-12-200-005-0000$	2,448	B3-1
2745 W 47TH ST	$19-12-200-006-0000$	2,448	B3-1
4717 S CALIFORNIA AVE	$19-12-200-031-0000$	33,641	M1-2
UNKNOWN ADDRESS CALIFORNIA AVE)	SOUTH	OF 4717	S
	$19-12-200-033-0000$	216,357	

Esperanza requests a rezoning of the subject property from C3-1, B3-1 and M1-2 to Business Planned Development to create a four-subarea planned development. Subarea A will be comprised of the existing BP1. Subarea B will be comprised of BP2. ${ }^{1}$ Subarea C will be comprised of the proposed accessory parking lot. A reciprocal easement agreement will ensure that the parking lot serves Subarea A and B (i.e. BP1 and BP2). At this time, Esperanza does not have a development plan for Subarea D. The overall planned development will have an FAR of .30 .

[^3]SUBAREA SUMMARY

SUBAREA	LOCATION	$\begin{aligned} & \text { LOT SIZE } \\ & \text { (SF) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BUILDING } \\ & \text { SIZE (SF) } \end{aligned}$	$\begin{aligned} & \hline \text { BUILDING } \\ & \text { HEIGHT } \end{aligned}$	FAR	USE
A	4700 S. California Ave.	69,758	26,100	34 ' to top of parapet	. 37	BP1 (Existing): Medical Service and accessory parking (69 total spaces of which 5 will be accessible) and 18 bike stalls.
B	4700 S. California Ave.	68,962	43,527	37' to top of parapet	. 63	BP2 (Proposed): -Medical Service and accessory parking (66 total spaces) - Day Care (Adult) -Restaurant, Limited; -Outdoor patio (if located at grade level) -Retail Sales, General
C	4717-4723 S. California Ave.	43,620	Vacant lot	Vacant lot	N/A	Accessory parking (94 total spaces of which 5 will be accessible)
D	$\begin{aligned} & \text { 2759-2757 and 2749- } \\ & 2745 \text { W. } 47^{\text {th }} \text { Street } \end{aligned}$	9,584	Vacant lot	Vacant lot	N/A	No development plan at this time.

[^0]: ADDRESS: 2833 W. $47^{\text {TH }}$ STREET; 2759-2757 AND 2749-2745 W. $47^{\text {TH }}$ STREET; AND 4717-4723 S. CALIFORNIA AVENUE INTRODUCED: JULY 20,2022
 PLAN COMMISSION:

[^1]: APPLICANT: HEALTHY BRIGHTON TITLE HOLDING CORPORATION NFP
 ADDRESS: 2833 W. 47th STREET; 2759-2757 AND 2749-2745 W. 47 т STREET; AND 4717-4723 S. CALIFORNIA AVENUE
 INTRODUCED: JULY 20, 2022

[^2]: APLICAN
 INTRODUCED: JULY 20,. 2022

[^3]: ${ }^{1}$ Esperanza proposes subareas for BP1 and BP2 for financing purposes.

